

© HARMAN

HiQnet Third Party
Programmer

Documentation
Protocol Specification

System Development and Integration Group

19th February 2013

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 1 of 91

Abstract

This document describes the formatting and methods available for third-party

programmers to control HiQnet Devices.

For BSS Soundweb London devices you should refer to the BSS Soundweb

London Third Party Control Document available from the BSS Audio website.

Limited warranty

No warranties: Harman expressly disclaims any warranty for the 'HiQnet Third

Party Programmer Documentation'. The 'HiQnet Third Party Programmer

Documentation‟ and any related documentation is provided 'as is' without

warranty of any kind, either express or implied, including, without limitation, the

implied warranties or merchantability, fitness for a particular purpose, or non-

infringement. The entire risk arising out of use or performance of the 'HiQnet

Third Party Programmer Documentation' remains with you.

No Liability for damages: In no event shall Harman or its suppliers be liable for

any damages whatsoever (including, without limitation, damages for loss of

business profits, business interruption, loss of business information, or any other

pecuniary loss) arising out of the use of, misuse of, or inability to use this Harman

product, even if Harman has been advised of the possibility of such damages.

Because some states/jurisdictions do not allow the exclusion or limitation of

liability for consequential or incidental damages, the above limitation may not

apply to you.

Harman

8760 South Sandy Parkway

Sandy, Utah 84070

Phone +1 (801) 568-7660

Fax +1 (801) 568-7662

International fax +1 (801) 568-7583

Revision 2.2 February 2013

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 2 of 91

Table of Contents

1 OVERVIEW ... 6

1.1 References ... 6

1.2 Scope.. 6

2 HIQNET PRODUCT ARCHITECTURE .. 7

2.1 Device ... 8

2.2 Virtual Device ... 8

2.3 Virtual Device Attributes ... 8

2.4 Device Manager Virtual Device .. 8

2.5 Object ... 9

2.6 Parameter ... 9

2.6.1 Parameter Attributes .. 9

2.7 HiQnet Addressing ... 11

2.7.1 HiQnet Device Address ... 12

2.7.2 Virtual Device Address .. 13

2.7.3 Object Address .. 14

2.7.4 Source & Destination Addresses in Messages...................................... 14

2.7.5 Parameter Index .. 15

2.7.6 Parameter Range .. 15

2.8 Alternate methods of finding a HiQnet address. .. 16

2.8.1 Copy HiQnet Information ... 16

2.8.2 Finding an Address using the Custom Panels and the Properties
Window ... 17

3 HIQNET MESSAGE FORMAT .. 22

3.1 Header .. 22

3.1.1 Version ... 23

3.1.2 Header Length ... 23

3.1.3 Message Length .. 23

3.1.4 Source Address ... 23

3.1.5 Destination Address ... 23

3.1.6 Message ID .. 24

3.1.7 Flags .. 24

3.1.8 Hop Count .. 24

3.1.9 Sequence Number ... 24

3.2 Types of Messages .. 24

3.2.1 Request Acknowledgement Message ... 24

3.2.2 Acknowledge Message Flag .. 25

3.2.3 Information Message Flag ... 25

3.2.4 Error Message Flag ... 25

3.2.5 Guaranteed Message Flag .. 25

3.2.6 Multi-part Message Flag .. 26

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 3 of 91

3.3 Device Level Methods .. 27

3.3.1 Get Attributes ... 27

3.3.2 GetVDList... 28

3.3.3 Store .. 29

3.3.4 Recall ... 31

3.3.5 Recall Action Determines Type of Data Affected 31

3.3.6 Locate .. 32

3.3.7 Locate Message .. 32

3.4 Event Log ... 33

3.4.1 Event Log Data .. 33

3.4.2 Requesting Event Log Client Subscriptions .. 35

3.4.3 Request Event Log .. 38

3.4.4 Request Event Log INFORMATION (response):................................... 39

3.5 Introduction to Parameters ... 41

3.5.1 Data Type Definition .. 41

3.5.2 Sensor/Non-Sensor ... 42

3.6 MultiParamSet .. 42

3.7 MultiParamGet .. 42

3.7.1 INFORMATION: ... 43

3.8 MultiParamSubscribe ... 44

3.9 MultiParamUnsubscribe ... 45

3.10 MultiObjectParamSet.. 46

3.11 ParamSetPercent ... 46

3.11.1 ParamSetPercent Message ... 48

3.12 ParamSubscribePercent .. 49

3.12.1 ParamSubscribePercent Message .. 50

4 HIQNET NETWORK MODEL .. 51

4.1 Routing Layer ... 51

4.1.1 Routing Layer Introduction ... 51

4.1.2 Transmitting Messages .. 52

4.1.3 Datagram Service .. 52

4.1.4 DiscoInfo .. 53

4.1.5 NetworkInfo .. 54

4.1.6 Device Arrival “Announce” ... 54

4.1.7 Device Departure “Goodbye” ... 55

4.2 Device Discovery on Demand .. 55

4.2.1 Searching for a Device .. 56

4.2.2 Keep Alive/Device Departure... 56

4.3 Table of Routing Layer Message IDs ... 58

4.3.1 DiscoInfo .. 58

4.3.2 GetNetworkInfo .. 59

4.3.3 Request Address ... 60

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 4 of 91

4.3.4 AddressUsed ... 60

4.3.5 SetAddress .. 61

4.3.6 Goodbye .. 61

4.3.7 Hello Query .. 62

4.3.8 Hello Info .. 63

4.4 Packet Service Layers .. 63

4.5 TCP/IP Packet Service ... 63

4.5.1 Reliable (TCP) Packet Service .. 64

4.5.2 Datagram (UDP) Packet Service ... 64

4.5.3 NetworkInfo .. 64

4.5.4 Gateway ... 65

4.5.5 Use Case – Closed loop control of a HiQnet product via TCP/IP –
addressing already fixed. .. 65

4.5.6 Use Case – Open Loop control of a HiQnet product via UDP 66

5 HIQNET STRING SETTINGS .. 67

6 RS232 PACKET SERVICE .. 69

6.1 Getting Started/Basic Command Structure .. 69

6.1.1 Baud Rate .. 70

6.1.2 Big Endian.. 70

6.1.3 Data Types... 70

6.1.4 Resync Request / Resync Acknowledge ... 70

6.1.5 Ping .. 70

6.1.6 Resync_Acknowledge Byte ... 71

6.1.7 Frame Start Bytes .. 71

6.1.8 Basic Command Structure (Unacknowledged – Open Loop) 71

6.1.9 Number Parameters .. 72

6.1.10 Parameter_ID ... 72

6.1.11 Data_Type.. 72

6.1.12 Parameter_Val ... 72

6.1.13 CCIT checksum ... 72

6.2 Setting Up and Maintaining a Communication Connection 73

6.2.1 Guaranteed Acknowledgement ... 77

6.2.2 Resync ... 77

6.3 Recall 0x0125 (Message ID) .. 77

6.4 Calculating Checksums .. 78

6.4.1 How to calculate a checksum using code for the Harman HiQnet
Device: .. 78

6.4.2 Serial String Method .. 80

6.5 Feedback .. 80

6.5.1 ParameterSubscribeAll .. 81

6.5.2 ParameterUnSubscribeAll ... 82

7 SESSIONS .. 85

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 5 of 91

7.1 Starting a Session .. 85

7.2 Detecting a Session Break ... 85

7.3 Characteristics of a Session ... 86

7.4 Sessions Use Cases .. 87

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 6 of 91

1 Overview

1.1 References

1.2 Scope

This document provides the publicly available means for controlling HiQnet

products. Included are the following:

 HiQnet product architecture

 All formatting of messages

 Network specific information for implemented transports

 Open-loop and closed loop control methodologies

 Examples utilizing System Architect to facilitate message formation

Although examples are given using specific Devices, detailed documentation is

not provided for every HiQnet Device. Instead, methods of using System

Architect to glean that information are provided. It is assumed that readers are

familiar with System Architect, the basics of Ethernet networking, and RS232.

Note that it is not intended that third-party control Devices implement all of the

methods detailed in this document. It is assumed that in most cases only a subset

of these messages will be implemented. Some of the information presented is for

explanatory reasons only, such that a person desiring to control a HiQnet Device

may understand the underlying behavior. Lastly, control of USB products is

beyond the scope of this document.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 7 of 91

2 HiQnet Product Architecture
It is important to have a basic knowledge of how HiQnet products are developed.

We envisage HiQnet as more than just a networking protocol. Our goal is to

develop a system solution for all Harman Pro networked products. To facilitate

that end, we have designed a common model or architecture for all products that

will be developed under HiQnet. This common product architecture is then

reflected as a messaging system that enables communication between products.

Finally, HiQnet also consists of reference designs on common physical networks.

The HiQnet messaging protocol was designed to be transport independent, it

requires only certain network services.

Node

Virtual Device (Node Manager)

Param

Param

Param

Object

Object

Param

Param

Param

Object

Param

Param

Param

Virtual Device

Param

Param

Param

Param

Param

The HiQnet product is modeled with a multi-tiered approach. The top level that

usually represents the product itself is called a Device. The Device must contain

at least one Virtual Device, the first of which acts as a Device Manager. Each

Virtual Device can contain Objects and/or Parameters. Objects themselves can

contain other Objects or Parameters. A Parameter contains the state of a single

controllable variable. Below we will define each of these terms in detail.

At every level in the hierarchy there are also attributes. Attributes are member

variables that contain useful data about the containing Virtual Device, Object, or

Parameter. For instance, one Object attribute is the Object Name. In the case of

parameters, attributes are used to hold the parameter's max and min values.

Attributes can either be STATIC, Instance, or Instance+Dynamic. STATIC

attributes are the same value across all Devices that are the same

manufacturer/model. Attributes that are denoted Instance indicates that the Device

upon powerup sets the value of the attribute. Attributes that are denoted

Instance+Dynamic are those that are set on Instantiation and can change during

the life of the item.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 8 of 91

Virtual Devices, Objects, and Parameters all have a unique Class ID and Class

Name. Either the Class Name or ID can be used to uniquely identify the HiQnet

item and allow the designer to know key information about the item. For example,

from the Class ID of an Object, the designer knows the number, type, and order of

Parameters in the object. From the Parameter Class ID, the designer knows the

data type and max/min.

It is important to note that there is no distinction in HiQnet between elements used

for signal processing such as a Parametric EQ, control elements such as a

mechanical fader, or sensor elements such as an output meter. Even global items

such as passwords and MIDI channels can and should be put inside the basic

HiQnet model. By viewing everything as a parameter, Object, or Virtual Device,

the same mechanisms for subscriptions and control can be universally applied

across the product.

2.1 Device

Device designates the Device or product itself. Devices are comprised of Virtual

Devices.

2.2 Virtual Device

The Virtual Device is a collection of Objects, parameters and attributes that make

up a useful unit. They offer the designers a convenient method of segmenting the

product. As an example, if you examine the structure of the dbx 4800 in the

System Explorer you will see that they have separated the product into two

sections, one for all the processing objects that can change with presets changes

and the other for the global utility section. At a glance it is very easy to

distinguish which parameters will be affected by a preset change.

2.3 Virtual Device Attributes

All Virtual Devices have the following Attributes:

AttributeID Attribute Data Type

0 Class Name STRING Static

1 Name String STRING Instance + Dynamic

2.4 Device Manager Virtual Device

Every product contains at least one Virtual Device, the Device Manager. Some

products such as the Crown UPS3 have been architected with only the Minimum

Device Manager Virtual Device.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 9 of 91

2.4.1.1 Device Manager Attributes

All Device managers Virtual Devices have the following Attributes:

Attribute ID Attribute Data Type

 0 Class Name STRING Static

1 Name String STRING Instance + Dynamic

2 Flags UWORD Instance

3 Serial Number BLOCK Instance

4 Software Version STRING Instance

2.5 Object

A HiQnet Object is a collection of parameters grouped together for convenience.

An example would be an EQ object or compressor object. Objects can contain

other objects so for example a channel object could be comprised of a gain and an

EQ object.

2.6 Parameter

Within the HiQnet model, the smallest modifiable parameter in a product is held

within the parameter. Examples of parameters include the variables of an audio

object, like frequency and the position of a fader on a control surface. Simple

products like a wall controller may contain only several parameters, while others

such as a mixing console may contain hundreds of thousands. Typical operations

on parameters include „set‟ a variable and „get‟ a variable; these could translate to

setting the frequency of an EQ and getting a delay time for display.

The HiQnet protocol supports several different data types including Unsigned

Byte, Float, String, etc. It is important when you are sending a message to a

HiQnet Device that you use the appropriate data format.

2.6.1 Parameter Attributes

Attribute ID Attribute Name Data Type Category

0 Data Type See Definition Static

1 Name String STRING Instance+Dynamic

2 Minimum Value Data Type Instance

3 Maximum Value Data Type Instance

4 Control Law Static

5 Flags UWORD Static

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 10 of 91

2.6.1.1 Minimum Value

Minimum Value is specified in the Parameter‟s Data Type. See section 2.7.6 for

an explanation on how to retrieve the minimum value of a parameter.

2.6.1.2 Maximum Value

Maximum Value is specified in the Parameter‟s Data Type except for the BLOCK

and STRING types, which will use a UWORD for its maximum. In the case of a

block, the maximum value specifies the maximum size that the variable length

block can be in bytes. In the case of a string, the maximum value also specifies

storage, which is twice the number of characters including the NULL because

strings are encoded with Unicode. See section 2.7.6 for an explanation on how to

retrieve the maximum value of a parameter.

2.6.1.3 Control Law

The processing object uses a control law to recommend how it would like to be

controlled. For example, a Parameter for frequency may want to be logarithmic, a

gain SV may want to be logarithmic with extra resolution around 0 dB.

If you have a Parameter that can take on any floating-point value between the

Minimum and Maximum, you still want to specify the control law to give a good

look and feel to the user. For example, in the case of a frequency variable, it is

often desirable that when the user turns an encoder or pushes the <up> control on

a spinner that the next value be logarithmically spaced from the previous value.

The control law may also be used to specify the granularity that a Parameter can

accept. For example, a gain Parameter may have a maximum resolution of .1 dB.

This control law is not needed in the case of an enumerated Parameter, as all steps

are known.

2.6.1.4 Flags

Bits 0, 2, and 3 are reserved. Bit 1 is the Sensor Attribute.

 0 = Non-Sensor

 1 = Sensor

This attribute is used in subscriptions to automatically set the type of subscription

to periodic or on change. Examples of sensor Parameters include output meters,

threshold meters, or power amp temperature. Non-sensor Parameters are things

like frequency or MIDI channel.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 11 of 91

2.7 HiQnet Addressing

HiQnet Addressing

HiQnet

Devices

Address

16 bits

Parameter

Index

16 Bits

VD

Address

8 Bits

Object Address

24 Bits

Addressing in HiQnet is split up into three main sections, a 16 bit HiQnet Device

address, a 32 bit field that designates the Virtual Device and Object and finally a

parameter Address that designates the correct parameter within the Object. The

System Explorer in System Architect always shows any of these addresses with a

trailing number enclosed in „[]‟.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 12 of 91

2.7.1 HiQnet Device Address

The HiQnet Device address is often referred to as the HiQnet address in System

Architect. In the below example, the three Devices are addressed 1, 2 and 3.

These addresses are shown in the System Explorer and the Venue View.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 13 of 91

2.7.2 Virtual Device Address

The Virtual Device and Object Addresses comprise a 32 bit number, segmented

into an eight bit Virtual Device and a 24 bit Object address. Using the dbx 4800

as an example, you see that the default configuration shows three Virtual Devices,

the Device Manager(Shown with the Device Name “DriveRack 4800”), the

Processing Object Virtual Device(shown with the preset name of “Wide Open”)

and the Utilities Virtual Device. These have the Virtual Device Addresses of 0, 1,

and 2 respectively.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 14 of 91

2.7.3 Object Address

The Object Address in the System explorer is broken into its three eight-bit

sections. For example, the first Input Mixer Object in the DriveRack 4800 is

addressed [3.2.0]. The second mixer is addressed [3.2.1]. The Object Address will

be unique within that Virtual Device.

The fully qualified 48 bit address of the first mixer then is

[3(Device).0(VD).3.2.0(Object)]

2.7.4 Source & Destination Addresses in Messages

Some messages are specific as to the kind of HiQnet „item‟ they may originate

from or can be sent to. An example is clearer – the SetAttribute message may be

sent by a Device Manager Virtual Device, a Virtual Device or an Object. This

asymmetry in permissible Source and Destination addresses is documented using

the following convention:

„DEVICE‟ is a placeholder for any Device Address.

„VD‟ is a placeholder for any Virtual Device Address.

„OBJECT‟ is a placeholder for any Object Address.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 15 of 91

2.7.5 Parameter Index

The Parameter Index uniquely identifies the parameter within an Object.

Continuing with the example 4800, you will see that the Input Mixer has four

parameters: Source Select[0], Input Gain[1], Pink Noise On/Off[2], and Pink

Noise Gain[3].

2.7.6 Parameter Range

The range of a parameter can be found in the SetSV message string that is

copied to the clipboard. In the HiQnet String Settings in the options, “Use

Placeholder for Parameter Value” should be enabled (see section 5). Right-

click on a control on a panel and choose “Copy HiQnet Parameter String”.

Paste in to a program such as notepad to find the SetSV message string and

which includes the range of the parameter.

02,19,00,00,00,22,00,33,00,00,00,00,00,01,11,06,11,00,01,

00,00,20,05,00,00,00,01,00,01,06,[Float (20 -

20000)]:XX,XX,XX,XX

The value where the XX‟s are are where the value should be inserted.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 16 of 91

2.8 Alternate methods of finding a HiQnet address.

Sometimes it can be difficult to find exactly the correct parameter you need

within the System Explorer. There are two other good ways to find the addresses

you need.

2.8.1 Copy HiQnet Information

The simplest method to find the HiQnet address of an object is to locate the

object on a panel, right-click the object, and choose “Copy HiQnet

Information”. The figure below shows the right-click context menu when a

PEQ is right-clicked on an dbx SC 32.

You can then paste the HiQnet Information in to a program like Notepad

which will give you

Name(type of object): 6-band PEQ

Node: (Hex):0x01, (Decimal):1

VD: (Hex):0x11, (Decimal):17

ObjectID: (Hex):0x061100, (Decimal):6.17.0

This provides you with the node address, virtual device address, and object

address. Combined these give you the overall HiQnet address of the object.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 17 of 91

2.8.2 Finding an Address using the Custom Panels and the
Properties Window

The simplest way to find an address when you don‟t know it is to find the

parameter you want to control on a factory panel and then drag it to a custom

panel. In this example, to get the address for a gain in the input module of the

Crown 4200.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 18 of 91

1) Start a new custom panel by going to the Custom Panel tab and selecting

“Create”

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 19 of 91

2) Now open the Channel 1 Source selector factory panel.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 20 of 91

3) Next, holding down the <Control> key, drag the “Routed” fader to the

new custom panel

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 21 of 91

4) Right Click on the Control to access the Parameter Address Editor

5) The full address is now visible in the Parameter Address Window. In this

example, this is HiQnet Address 3, Virtual Device 0, Object Address

[5.40.1] and Parameter Index 0.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 22 of 91

3 HiQnet Message Format
The following section lists the detailed message formats for the common HiQnet

messages. See section 3.4.1 for an explanation of the datatypes and how they are

stored.

3.1 Header

This is the common header for HiQnet messages. The first field is for HiQnet

message version. The current HiQnet version is 0x02, please use this as the

default.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0xXX

MESSAGE LENGTH ULONG 0xXXXXXXXX

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0xXXXX

FLAGS UWORD 0x0000

HOP COUNT UBYTE 0x01

SEQUENCE NUMBER UWORD 0x0001

Optional „Error‟ header (FLAGS=0x0008):

ERROR CODE UWORD 0x02

ERROR STRING STRING “The Error Message”

Optional „Multi-part‟ header (FLAGS=0x0040):

START SEQ. NO. UWORD 0x02

BYTES REMAINING ULONG 0xXXXXXXXX

Optional „Session Number‟ header (FLAGS=0x0100):

SESSION NUMBER UWORD 0xXXXX

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 23 of 91

When using multiple header extensions in a single packet they must be added to

the end of the header in the same order as they are listed above.

A Device will send an error header back as a reply to a received message with a

header extension it does not understand. Older Devices do not support sessions,

for example. Some newer Devices require sessions always. Other Devices will

support sessions, but allow session-less communication. So always start a session

with a Hello(Query) with a session number, and if the Device replies with a

Hello(Error) header, then proceed with session-less communication with that

Device.

 If an error message is returned in response to a Hello message, a

MultiParamGet(NumParams=0) message will be used for backward

compatibility in order to start Keep Alives.

 See the sessions section.

Messages may originate from anywhere in the hierarchy –

0xDEVICEVDOBJECT.

3.1.1 Version

The Version Number indicates the revision number of the entire protocol; it is not

used for differentiating between revisions of individual messages. HiQnet is

currently at revision 2. Devices that communicate with HiQnet version 1.0

include the dbx ZonePro family. All others use version 2.0.

3.1.2 Header Length

The Header Length is the size in bytes of the entire message header, including any

additional headers such as 'Error' or 'Multi-part'.

3.1.3 Message Length

The Message Length is the size in bytes of the entire message - from the

„Version‟ field through to the last byte of the payload.

3.1.4 Source Address

The Source Address specifies the HiQnet address where the message has come

from; this is often used by the recipient for sending back reply messages.

3.1.5 Destination Address

The Destination Address specifies where the message is to be delivered to.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 24 of 91

3.1.6 Message ID

The Message ID is a unique identifier that indicates the method that the

destination Device must perform. If there is a payload, it is usually specific to the

type of method indicated by the Message ID. Product-specific IDs may also exist

and will be documented appropriately.

3.1.7 Flags

The Flags denote what kinds of options are active when set to „1‟ and are

allocated in the following manner:

Bit 15:

Reserved

Bit 14:

Reserved

Bit 13:

Reserved

Bit 12:

Reserved

Bit 11:

Reserved

Bit 10:

Reserved

Bit 9:

Reserved

Bit 8:

Session

Number

(header

extension)

Bit 7:

Reserved

Bit 6:

Multi-part

message

(header

extension)

Bit 5:

Guaranteed

Bit 4:

Reserved

Bit 3:

Error

(header

extension)

Bit 2:

Information

Bit 1:

Acknowledge-

ment

Bit 0:

Request

Acknowledge-

ment

Bit 5 must be set for any applications using TCP/IP only on the network

interface. This will ensure that any messages are sent guaranteed (TCP rather

than UDP).

3.1.8 Hop Count

The Hop Count denotes the number of network hops that a message has traversed

and is used to stop broadcast loops. This field should generally be defaulted to

0x05.

3.1.9 Sequence Number

The Sequence number is used to uniquely identify each HiQnet message leaving a

Device. This is primarily used for diagnostic purposes. The sequence number

starts at 0 on power-up and increments for each successive message the Routing

Layer sends to the Packet Layer. The Sequence Number rolls over at the top of its

range.

3.2 Types of Messages

3.2.1 Request Acknowledgement Message

The ReqAck flag is used to provide a message level service that can be used by

the sender to know when the recipient of the message has carried out the specified

action. When the message sender sets the ReqAck flag, the message recipient,

upon performing the specified action, will send back the same message to the

sender with the ReqAck flag cleared and the Ack flag set. This provides a

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 25 of 91

valuable mechanism because the Ack is not sent upon receipt of the message

which would mean “I have received your request;” instead by sending the Ack

upon performing the action this literally means “I have done it.” If the original

message had any data in its payload, that data is not sent back with the

acknowledge message. This mechanism can be used to key actions such as the

sending of the next message only once the recipient has serviced the first

message.

3.2.2 Acknowledge Message Flag

As specified above, a message with the Ack bit set means I have performed the

requested action.

3.2.3 Information Message Flag

The Information flag is normally used to denote a response to a request. Instead of

defining a new message ID for the reply to each request, we have decided to

encode the reply ID using the Information flag. For example, the response to a

Get message is also a Get with the Information flag set and the corresponding data

appended in the payload. Note that the Information and Ack flags may be used

together. If you receive a Get message with the ReqAck flag set, then your

response would be a Get with the Ack and Information flags sent and any

corresponding payload appended to the end.

The Info flag is also used to indicate unsolicited informational messages (a

message that is neither a request nor a response to a request). Again, the

Information flag simply means the message is not a request!

3.2.4 Error Message Flag

In the case of an error in a received message, the „error‟ flag must be set and an

error code and error string appended to the end of the message header. The

original message is then returned to the sender.

3.2.5 Guaranteed Message Flag

When set, the „guaranteed‟ flag indicates the message must be transmitted on a

network service with guaranteed delivery. A cleared flag denotes a preference for

the message to be sent via an unreliable, datagram service. In this latter case, the

Routing Layer may in some circumstances (such as proxy) choose to send the

message via the guaranteed service instead.

1 – Guaranteed

0 – Unreliable datagram

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 26 of 91

3.2.6 Multi-part Message Flag

When set, this flag indicates the message is part of a multi-part message sequence

and the message header is extended by the addition of the „Multi-part‟ header.

1 – Multi-part message

0 – Single-part message

Many Devices will not be able to send a single message large enough to contain

all the data they wish to transmit (such as the data set required for a preset

change). For this reason, we provide a means of sending multi-part messages

where the payload is spread over a number of messages, which together form all

the data required for a single method.

The algorithm for multi-part messages is as follows:

1. Preparing the first multi-part message header

a) Set the „Multi-part‟ flag.

b) Copy the „Sequence Number‟ to the „Start Sequence No.‟

c) Set „Bytes Remaining‟ to be the data outstanding, including this data.

 - this is the total size of the payload, not including headers

d) Transmit the first message.

2. Preparing the remaining multi-part message headers

a) Set the „Multi-part‟ flag.

b) Set the „Start Sequence No.‟ to that used in the first multi-part message.

c) Set 'Bytes Remaining' to be the data outstanding, including this data.

 - does not include the previous messages' payload sizes

d) Transmit the current message. This is the last message when 'Bytes

Remaining' is equal to this message's payload.

Destination knows when the last message is being received because the „Bytes

Remaining‟ in the last message's multi-part header is the same as the size of the

payload in the last message.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 27 of 91

3.3 Device Level Methods

METHOD NAME MESSAGE ID PURPOSE

GetAttributes 0x010D Gets ‘n’ attribute values from Object
or VD

GetVDList 0x011A Gets list of Virtual Devices in a Device

Store 0x0124 Stores local performance data

Recall 0x0125 Recalls local or venue-wide
performance data

Locate 0x0129 Requests a Device to identify itself to
the customer

3.3.1 Get Attributes

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x010D

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

NoOfAttributes UWORD 0x0003

AID UWORD 0x0000

AID UWORD 0x0001

AID UWORD 0x0002

INFORMATION (response to message):

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x010D

FLAGS UWORD

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 28 of 91

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

NoOfAttributes UWORD 0x0003

AID UWORD Zero-based Attribute ID (AID)

Data type UBYTE Enumerated Data Type of Attribute

Value ‘N’ bytes Value of Attribute

AID UWORD Zero-based Attribute ID (AID)

Data type UBYTE Enumerated Data Type of Attribute

Value ‘N’ bytes Value of Attribute

AID UWORD Zero-based Attribute ID (AID)

Data type UBYTE Enumerated Data Type of Attribute

Value ‘N’ bytes Value of Attribute

3.3.2 GetVDList

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xFFFF00000000

MESSAGE ID UWORD 0x011A

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Workgroup Path STRING Workgroup asked to respond

INFORMATION (response):

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICE00000000

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x011A

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 29 of 91

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Workgroup Path STRING Workgroup that is replying

NumVDs UWORD 0x0004

VDAddress UBYTE 0

VDClassID UWORD Class Of Device Manager

VDAddress UBYTE

VDClassID UWORD

VDAddress UBYTE

VDClassID UWORD

VDAddress UBYTE

VDClassID UWORD

3.3.3 Store

The Store method saves various types of performance data into non-volatile local

storage such as FLASH.

UBYTE ubyStoreAction

UWORD uwStoreNumber

STRING strWorkgroup

UBYTE ubyScope

The „Store Action‟ determines the type of data affected:

 0 – Parameters (parameters only)

 1 – Subscriptions (Subscriptions only)

 2 – Scenes (1 to N PARAM + Subscriptions)

 3 – Snapshots (All PARAMs + Subscriptions)

 4 – Presets (Config + Snapshot)

5 – Venue

The uwStoreNumber parameter identifies a local storage space and undergoes no

translation or mapping to another value.

The strWorkgroup parameter is not used and should be set to 0.

The ubyScope parameter is reserved for future definition.

Devices that are unable to perform the store operation will return an error.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 30 of 91

The Store(info) message allows a Device to indicate to a subscribed Device that a

storage location has been modified. The source of the data stored into non-volatile

storage is not inferred. The payload indicates the storage location that has been

modified.

Store(info) allows synchronization between multiple System Architects

subscribed to a Device whenever a change in the configuration state occurs.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVD000000

MESSAGE ID UWORD 0x0124

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Store Action UBYTE

Store Number UWORD

Workgroup Path STRING Not Used – Set Length to 0.

Scope UBYTE Reserved for Automation

INFORMATION:

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVD000000

MESSAGE ID UWORD 0x0124

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Store Action UBYTE

Store Number UWORD

Workgroup Path STRING Not Used – Set Length to 0.

Scope UBYTE Reserved for Automation

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 31 of 91

3.3.4 Recall

Activates various kinds of performance data.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVD000000

MESSAGE ID UWORD 0x0125

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Recall Action UBYTE

Recall Number UWORD

Workgroup Path STRING Workgroup doing Recall Venue

Scope UBYTE Reserved for Automation

3.3.5 Recall Action Determines Type of Data Affected

Recall Action

 0 – Parameters (parameters only)

 1 – Subscriptions (Subscriptions only)

 2 – Scenes (1 to N PARAM + Subscriptions)

 3 – Snapshots (All PARAMs + Subscriptions)

 4 – Presets (Config + Snapshot)

 5 – Venue

For actions 0 to 4, Recall Number identifies a local storage space and undergoes

no translation or mapping to another value.

For action 5, Recall Number identifies a „venue recall number‟, which each

Device translates into a „local recall‟ and „local action‟ via the „Venue Table'.

The Venue Table for Devices can be examined and modified through System

Architect. See the Tools/Venue Recall button on the ribbon.

Some Devices are not required to do anything for a specific „Recall Number‟;

these may enter the enumerated value „No Action‟ in their Venue Table.

The Workgroup Path indicates which Devices are to respond to a „venue recall‟.

Devices that are outside of the specified workgroup will take no action. For all

other recall actions this parameter is not used and should be set to 0.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 32 of 91

The Scope parameter is reserved for future definition.

Devices that are unable to perform the requested recall will return an error. See

the Event Log section for the format of the Event Log Subscription Information

message that is sent from Devices when an errors occur.

3.3.6 Locate

The „locate‟ method requests that the receiver makes itself „visible‟ to the

customer by flashing its „Locate LEDs‟. If available, these are typically located on

the hardware panel of the product.

The locate method is compulsory for Device Manager Virtual Devices. Virtual

Devices and Objects may optionally choose to support it.

The method has a single parameter:

UWORD uwTime - Locate time in milliseconds

0x0000 – Turn off locate LEDs

0xFFFF - Turn on locate LEDs.

Time periods between 0x0001 and 0xFFFE indicate a period of time during which

the locate LEDs must flash. After the time period is completed the LEDs must be

turned off.

The locate method will flash the LEDs at a rate of 2Hz. This allows the „locate‟

signal to be differentiated from product-specific flashes which may be active on

the same LED (some products only have one LED).

3.3.7 Locate Message

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0xXX

MESSAGE LENGTH ULONG 0xXXXXXXXX

SRC HIQNETADDR 0xDEVICEVDOBJECT

DEST HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0129

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 33 of 91

Payload…

Time UWORD Locate time in milliseconds

HiQnet Serial Number BLOCK Serial number of Device to be located

3.4 Event Log

Each HiQnet Device has an Event Log. Items reported into the Event Log such as

protocol errors or product-specific errors can be transmitted onto the network. If

you subscribe to Device foo’s Event Log and Device bar sends foo a malformed

packet, because you are subscribed to foo’s Event Log, foo will send you an event

log message telling you it has received a bad message from Device bar.

3.4.1 Event Log Data

3.4.1.1 Category

Category identifies a sub-system within the product into which associated Event

IDs are grouped. There may be no more than 32 event categories, those already

declared as are follows:

0 – Unassigned

1 – Application

2 – Configuration

3 – Audio Network

4 – Control Network

5 – Vendor Network

6 – Startup

7 – DSP

8 – Miscellaneous

9 – Control Logic

10 – Foreign Protocol

11 – Digital I/O

12 – Unassigned

13 – Unassigned

14 – Control Surface

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 34 of 91

15 – 31 Unassigned

The Category is represented in some messages by an enumerated UWORD and in

others as a ULONG bit-field.

3.4.1.2 Event ID

The Event ID identifies the actual event that triggered a log entry. These are held

within a zero based enumeration with the range of a UWORD. The Event ID may

be „overloaded‟ across event categories; that is to say, an Event ID such as zero

may mean „Device Started‟ within one Category and „Preset Recalled‟ in another.

The Event ID range is divided into two sections:

0x0000 – 0x7FFF  Global Event IDs common across all products

0x8000 – 0xFFFF  Custom Event IDs specific to a Device Manager Class ID

3.4.1.3 Event ID Definitions

The Global Event IDs for each category are given below:

Control Network Event IDs

Event ID Possible causes

0x0001 – Invalid Version The version number in the HiQnet header is unknown.

0x0002 – Invalid Length
The header length specified in the packet is wrong.
There are not enough bytes in packet payload to hold
message type.

0x0003 – Invalid Virtual Device
Tried to Create VD on an invalid VD.
Set/Get/Subscribe/Attributes referenced an invalid
VD.

0x0004 – Invalid Object Set/Get/Subscription referenced an invalid object.

0x0005 – Invalid Parameter
Set/Get/Subscribe/Attributes referenced an invalid
Parameter.

0x0006 – Invalid Message ID Received a message with an unknown Message ID.

0x0007 – Invalid Value

Tried to set an attribute with a value that is out of
range.
Referenced an invalid scene number, or encountered
an invalid scene “data” length.
Referenced an invalid preset number.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 35 of 91

0x0008 – Resource Unavailable

Running out of internal software resources.
Device is in a state where it cannot process the
current request (flashing, configuration, etc).
Cannot set Device ID, subscription, Parameter value,
or the configuration is locked.

0x0009 – Unsupported

Received a message that is considered obsolete.
Trying to flash a Device that does not support flashing.
Trying to add unsupported or invalid (to long)
attribute types.

0x000A – Invalid Virtual Device Class Referenced an invalid VD Class.

0x000B – Invalid Object Class Referenced an invalid Object Class.

0x000C – Invalid Parameter Class Referenced an invalid Parameter Class.

0x000D – Invalid Attribute ID Get/Set referenced an invalid Attribute ID.

0x000E – Invalid DataType Set referenced an invalid data type (class).

0x000F – Invalid Configuration

Began creating a new VD and never finished.
Lost connection while creating a new VD.
Trying to configure a Device that is “owned” by a
different Device.

0x0010 – Flash Error
An error was encountered during the requested flash
operation.

0x0011 – Not a Router
Another Device has requested a guaranteed delivery
connection through this Device to a third Device, and
this Device is not a router.

3.4.2 Requesting Event Log Client Subscriptions

A client requests an event log subscription by sending a

SubscribeEventLogError! Reference source not found. message to the Device

Manager Virtual Device of the Device it is interested in receiving events from.

The „Category Filter‟ indicates which categories of event the client wishes to hear

about.

The category is a field of type ULONG, a „1‟ indicates a subscription; „0‟ means

no action (it does not mean unsubscribe). Each category is represented by a bit in

the ULONG. The same client may subscribe multiple times to the same Device.

The server receiving the SubscribeEventLog message will perform an OR

operation on the current filter settings and the ones in the message payload; the

result will be the actual categories subscribed to:

Current Filter Settings: 00000000000000000000000100010011

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 36 of 91

Payload Filters: 00000000000000010000001000010000

Resulting Subscription: 00000000000000010000001100010011

The „Max Data Size‟ allows the client a chance to limit the size of any „additional

data‟ sent to it as part of an event log entry. It is the server‟s responsibility to

ensure this data is not larger than the figure specified by the client.

3.4.2.1 Sending Subscribed Events

Once an event log subscription is activated, the server will send the client a

RequestLogInfo(I) message. Typically, there will be one message per event, but

the server is able to package multiple events per message and so the client must

be able to handle a message containing multiple events.

3.4.2.2 Cancelling Client Subscriptions

A client may cancel a category of event log subscription by sending the server an

"Unsubscribe Event Log" message. The „Category‟ in the payload specifies the

category of events the client is unsubscribing from; this may be a single category

or multiple categories.

Event Log subscriptions, along with all other types of subscriptions, are

automatically cancelled if you send the Device a Goodbye message.

A „1‟ bit represents „unsubscribe‟, a „0‟ represents „do nothing‟.

For example:

 Current Filter Settings: 00000000000000010000001100010011

 Payload Filters: 00000000000000000000000000000011

 Resulting Subscription: 00000000000000010000001100010000

3.4.2.3 Protocol Errors

A Protocol error is a special kind of event which occurs when a Device receives a

HiQnet message it cannot service. This may be for any number of reasons but

usually because the message is incorrectly formatted, addressed to the wrong

destination, or contains out of range parameter data. All HiQnet Devices must be

able to generate and handle error messages.

The error must be reported back to the message sender by returning a HiQnet

„error‟ message. The error message contains both an error code and a network-

byte-ordered Unicode string representation of the error which may be used by a

technician for diagnosing the fault. The protocol error codes which may be used

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 37 of 91

in the message are the same as the Event IDs enumerated in the „Control

Network‟ category of the Event Logging section.

Unlike event logging, when a protocol error occurs, the error message is always

returned to the sender, regardless of any event log settings.

3.4.2.4 Subscribe Event Log Messages

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0115

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Max Data Size UWORD Max size of ‘Additional Data’ in any
RequestEventLog(I) message

Category Filter ULONG

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 38 of 91

3.4.2.5 Unsubscribe Event Log

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x012B

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Category ULONG

3.4.3 Request Event Log

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x012C

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 39 of 91

3.4.4 Request Event Log INFORMATION (response):

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x012C

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

No Of Entries UWORD Number of entries in log

Category UWORD Enumerated Category event falls in

Event ID UWORD Enumerated ID of this event

Priority UBYTE 3 enumerated priority levels

Sequence Number ULONG Incrementing event instance counter

Time STRING HH:MM:SS

Date STRING YEAR-MO-DA

Information STRING Description of event

Additional Data BLOCK Application specific extra data

Category UWORD Enumerated Category event falls in

Event ID UWORD Enumerated ID of this event

Priority UBYTE 3 enumerated priority levels

Sequence Number ULONG Incrementing event instance counter

Time STRING 23:16:23

Date STRING 2004-12-15

Information STRING Description of event

Additional Data BLOCK Application specific extra data

3.4.4.1 Priority

The Priority field allows events in the Event Log to be assigned one of three

levels of importance, these are enumerated as follows:

 0 - Fault

 1 - Warning

 2 - Information

The Priority is represented by a UBYTE.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 40 of 91

3.4.4.2 Sequence Number

The Sequence Number denotes the order that events occurred in. This field is

important for products that do not have a real time clock with which to generate

the time and date fields of the event log. The sequence number starts at 0 the first

time the unit is powered on and continues to increment by one for each generated

event. The sequence number must be preserved in non-volatile storage so that it

persists across power cycles and firmware upgrades.

The Sequence Number is a ULONG.

3.4.4.3 Time

Time represents when the event was generated and logged. The format is 24 hour

clock, with two digits for hours, minutes & seconds separated by a colon For

example:

17:25:47

The Time is transported via the STRING data-type.

3.4.4.4 Date

Date represents the day the event was generated and logged. The format is year,

month & day separated by hyphens. For example:

2004-12-13

The Date is transported via the STRING data-type.

3.4.4.5 Information

This is a string giving any additional information about the event. The data-type is

STRING.

3.4.4.6 Additional Data

Additional Data is a BLOCK field for events which carry event-specific data.

This could for example, be a copy of a HiQnet message which when processed

triggered an internal error within a Device. The format and purpose of the data

may also be event-specific, it is not required that the recipient should necessarily

be able to understand or want to use the extra data.

The maximum size of this data is a decision left open to the product designer.

However, the product must be able to truncate the data to the maximum size

requested by a client that subscribed to the event log.

If an event does not carry additional data then the length of the BLOCK must be

set to 0.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 41 of 91

3.5 Introduction to Parameters

3.5.1 Data Type Definition

A small set of data types are used in HiQnet to represent parameter values. All

parameters must use one of the following data types:

Name ‘C’ Declaration Range Bytes Enum

eratio
n

BYTE Char -128 to 127 1 0

UBYTE unsigned char 0 to 255 1 1

WORD Short -32768 to 32767 2 2

UWORD unsigned short 0 to 65535 2 3

LONG Long -2147,483648 to
2147,483647

4 4

ULONG unsigned long 0 to 4,294,967,926 4 5

FLOAT32 Float As IEEE-754 4 6

FLOAT64 Double As IEEE-754 8 7

BLOCK N/A 0 to 65535 bytes N/A 8

STRING N/A 0 to 32767 chars N/A 9

LONG64 N/A Very Big 8 10

ULONG6
4

N/A Huge 8 11

The format for BLOCK is a variable length of memory that may be used for any

kind of data. The first two bytes are a UWORD that contains the size of the block

in bytes not including the UWORD itself. The maximum size of the BLOCK is

constrained to 65536 bytes. Because blocks can be used to represent any kind of

structured data, it is assumed that the sending and receiving sides know how to

format the data.

Strings are Unicode and stored using the String data type. Like BLOCK, the

actual string data is prefixed with a UWORD count indicating the length of the

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 42 of 91

string in bytes. Strings sent over the network are to include the NULL character at

the end of the string. Because we are using Unicode, the length used in the String

format is 2 * (strlen + 1). For example: for the string “Hello World,” the count

will be 24. Note, strings are network-byte-ordered Unicode while on the wire.

3.5.2 Sensor/Non-Sensor

Sensor parameters are those that update periodically such as a meter. Non-sensors

are normal parameters that update only when changed. Examples of non-sensors

include Frequency or Gain.

3.6 MultiParamSet

Set „NumParam‟ parameters values within an object or Virtual Device.

„Param_ID‟ specifies the particular parameter to set. The payload example below

shows an array of three Parameters.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0100

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

NumParam UWORD 3

Param_ID UWORD

Param_DataType UBYTE

Value ‘N’ bytes

Param_ID UWORD

Param_DataType UBYTE

Value ‘N’ bytes

Param_ID UWORD

Param_DataType UBYTE

Value ‘N’ bytes

3.7 MultiParamGet

Get „NumParam‟ parameters values within an object or Virtual Device.

„Param_ID‟ specifies the particular parameter to get.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 43 of 91

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0103

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

NumParam UWORD 0x0003

Param_ID UWORD

Param_ID UWORD

Param_ID UWORD

3.7.1 INFORMATION:

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0103

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

NumParam UWORD 0x0003

Param_ID UWORD

Param_DataType UBYTE

Param_Value ‘N’ bytes

Param_ID UWORD

Param_DataType UBYTE

Param_Value ‘N’ bytes

Param_ID UWORD

Param_DataType UBYTE

Param_Value ‘N’ bytes

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 44 of 91

3.8 MultiParamSubscribe

Subscriptions are used so that the client may be automatically notified when a

parameter has been changed. Because the HiQnet model is a peer-to-peer model,

you may specify the receiving destination parameter. This might be useful when

your controller only has a few parameters in it that you want to map across the

network.

The sensor rate is the fastest that the client wishes to receive updates for sensor

parameters. Based on workload, the server may choose to send the updates

slower. The sensor rate is ignored for non-sensor parameters.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x010F

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

No of Subscriptions UWORD 2

Publisher Param_ID UWORD

Subscription Type UBYTE 0 – Set to 0

Subscriber Address HIQNETADDR

Subscriber Param_ID UWORD

Reserved UBYTE 0 – Reserved

Reserved UWORD 0 – Reserved

Sensor Rate UWORD Period in milliseconds

Publisher Param_ID UWORD

Subscription Type UBYTE 0 – Set to 0

Subscriber Address HIQNETADDR

Subscriber Param_ID UWORD

Reserved UBYTE 0 – Reserved

Reserved UWORD 0 - Reserved

Sensor Rate UWORD Period in milliseconds

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 45 of 91

3.9 MultiParamUnsubscribe

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0112

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Subscriber Address HIQNETADDR

Number of Subscriptions UWORD 2

Publisher Param_ID UWORD

Subscriber Param_ID UWORD

Publisher Param_ID UWORD

Subscriber Param_ID UWORD

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 46 of 91

3.10 MultiObjectParamSet

Certain devices may respond to a MultiParamSubscribe message with a

MultiObjectParamSet message. This message encodes parameter values from

different objects. The example below shows two objects, the first with two

parameters and the second object with one parameter.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0101

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Num_Objects UWORD 0x0002

Object_Dest ULONG 0xXXXXXXXX

Num_Params UWORD 0x0002

Param_ID UWORD

Param_DataType UBYTE

Value ‘N’ bytes

Param_ID UWORD

Param_DataType UBYTE

Value ‘N’ bytes

Object_Dest ULONG 0xXXXXXXXX

Num_Params UWORD 0x0001

Param_ID UWORD

Param_DataType UBYTE

Value ‘N’ bytes

3.11 ParamSetPercent

ParamSetPercent sets the value of a parameter using a Percentage Value. Unlike

ParamSetPercent allows simple control of any parameter without the need to

provide control law conversions or format the value in the native format required

by the parameter Class ID. Indeed, when using ParamSetPercent, no prior

knowledge of the parameter‟s attributes are required because the burden of

dealing with Data Type formatting, range limiting and control law conversions are

off-loaded from the controller to the controlled.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 47 of 91

Let‟s compare controlling a parameter with ParamSet and ParamSetPercent.

Suppose you wanted to perform a ParamSet on a Param with a Class ID of

ClassPeqFreq and the following attributes:

ParamClass ParamClassPeqFreq

 Data_Type ULONG

 Max 20000

 Min 20

 Control Primitive LOG

The attributes state that the Param is a frequency value in the range 20Hz to

20,000Hz and stored in a ULONG. The Control Primitive recommends a

logarithmic mapping between the surface control and the Param. This ensures that

adequate resolution is given at the bottom end and the control has a good feel to

the user when they adjust the frequency.

ParamSetPercent requires no prior knowledge of the parameter‟s attributes. A

control surface wishing to set the value just sends down a percentage value

between 0 and 100%. The ParamSetPercent method will take care of everything –

even the logarithmic Control Primitive.

ParamSet, in contrast, requires that the frequency value sent to the parameter be

formatted in the manner dictated by the parameter‟s Class ID – a ULONG in the

range 20 to 20,000. Further to that, the Control Primitive recommends a LOG

conversion; the control surface wishing to do this would need to provide a

translation from the linear units that an encoder or fader outputs into the log curve

requested by the parameter. Of course prior to this, the control surface must have

had prior knowledge of the parameter‟s Class ID or had issued a query for the

attributes.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 48 of 91

The Percentage Value is encoded as a UWORD in 1.15 fixed-point format:

In 1.15 format, bit 15 is used to indicate the sign and the remaining bits 0 to 14

are used to represent the fractional part of the number. 0x8000 represents –1.0 and

0x7fff represents1.0 – 1/32768. The method uses an implicit scale factor of 100%,

so 0x8000 = -100% and 0x7FFF = approximately 100%.

3.11.1 ParamSetPercent Message

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0102

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

NumPARAM UWORD 0x0003

PARAM_ID UWORD

PARAM_Value UWORD 1.15 signed fixed point

PARAM_ID UWORD

PARAM_Value UWORD 1.15 signed fixed point

PARAM_ID UWORD

PARAM_Value UWORD 1.15 signed fixed point

7 01236 4599101112131415

Sign Bit

Fractional Part

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 49 of 91

3.12 ParamSubscribePercent

The ParamSubscribePercent method sets up a percentage-subscription. It

functions pretty much the same way as MultiParamSubscribe, except

subscriptions are sent out using the ParamSetPercent message, rather than

MultiParamSet.

UWORD uwPublisherParamID

UBYTE ubySubscriptionType

HIQNETADDR hiqSubscriberAddress

UWORD uwSubscriberParamID

UBYTE ubyMode

UWORD uwModeParamID

UWORD uwSensorRate

uwPublisherParamID – Param being subscribed to

ubySubscriptionType – Set to zero

hiqSubscriberAddress – Object to send the subscription to

uwSubscriberParamID – Param to send subscription to

ubyMode – Sets display mode for Parameter

uwModeParamID – Subscriber Param to receive the „ubyMode‟

uwSensorRate – Period rate in ms for sending sensor Params

The ParamSubscribePercent method is invoked by a subscriber to request that the

publisher send the subscriber the value of a Param whenever it has been changed

by a third party; this is the subscription. The Param being subscribed to is

specified by the PublisherParamID parameter. Where the subscription is for a

sensor Param, the subscribed Param value will actually be sent out on a periodic

basis, whether it has changed value or not. The subscriber can request a specific

rate via the SensorRate parameter. Whenever the Param value, is transmitted to

the subscriber, the message is sent to the location the subscriber requested; the

hiqSubscriberAddress and uwSubscriberParamID.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 50 of 91

3.12.1 ParamSubscribePercent Message

This message shares the same payload as the MultiParamSubscribe message.

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD 0x0111

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

No of Subscriptions UWORD 2

Publisher ParamID UWORD

Subscription Type UBYTE 0 – Set to 0

Subscriber Address HIQNETADDR

Subscriber Param_ID UWORD

Reserved UBYTE 0 – Not Used

Reserved UWORD 0

Sensor Rate UWORD Period in milliseconds

Publisher ParamID UWORD

Subscription Type UBYTE 0 – Set to 0

Subscriber Address HIQNETADDR

Subscriber ParamID UWORD

Reserved UBYTE 0 – Not Used

Reserved UWORD 0

Sensor Rate UWORD Period in milliseconds

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 51 of 91

4 HiQnet Network Model
The HiQnet architecture is transport agnostic. Each network type has a common

layering structure as shown above. Message layer functions have been defined

above; we now dive into the routing and transport layers.

4.1 Routing Layer

4.1.1 Routing Layer Introduction

The Routing Layer in HiQnet performs two main functions – the abstraction of

different networking architectures, and the routing of messages between them.

The goal of abstraction is to isolate the Application Layer code from the differing

characteristics of the underlying protocols and Physical Layers. The Application

Layer code need not know that a particular Device is on TCP/IP or Token Bus, or

Ethernet or RS485; it just needs to know that the Device can be communicated

with over a standard interface. The Routing Layer takes care of locating the

Device and sending messages to it over the appropriate network. In this function,

RS485

Datalink

Layer

RS232

Datalink

Layer

Reliability

Layer

Application Layer (Product-specific code)

USB Datalink Layer

Message Layer

TCP (Transport Layer)

Routing Layer

Packet

Layer

Reliability

Layer

Reliability

Layer

Packet

Layer

Packet

Layer

Translation

Layer

...

...

...

...

Packet Layer

IP (Network Layer)

Ethernet

Datalink Layer

Network

Layer

Network

Layer

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 52 of 91

the Routing Layer may also be queried by the Application Layer code for network

specific information; this can be useful for monitoring purposes or when a user

wants direct control over specific settings such as the IP address of a Device.

The second main function of the Routing Layer is to route messages across

different Packet Service Layers. A product may serve as a bridge onto a different

network type or a router between similar network types. Messages are received in

on one Packet Service Layer, and in the Routing Layer passed up to the Message

Layer service if the message is for this Device, or onto another Packet Service

Layer if the message is actually for a different Device.

The Routing Layer‟s routing function is not to be confused with any routing that

may occur within a protocol‟s Network Layer. The former routes a HiQnet

message across a variety of Network Protocols and physical media, whilst the

latter typically only routes a datagram within a specific Network Protocol.

4.1.2 Transmitting Messages

The Routing Layer offers two services for transmitting messages, Datagram and

Guaranteed. The service used to convey a message across the network is

determined by the „Guaranteed‟ flag in the HiQnet Message Header.

With some messages, in some circumstances, the Routing Layer will choose to

override the service specified in the message header and send the message out on

a different service.

4.1.3 Datagram Service

The Datagram service provides a fast connectionless means of transmitting

messages to either unicast or broadcast addresses. The service does not guarantee

delivery nor protect against duplicate, missing, or out of sequence messages.

Typically, this service is used for locating other Devices on the network (Device

Discovery) and for transmission of sensor/meter data.

4.1.3.1 Guaranteed Service

The Guaranteed service provides a reliable, connection-oriented means of

transmitting messages to unicast addresses. The service will guarantee delivery

and protect against duplicate, missing, or out of sequence messages. Typically,

this service is used for all HiQnet messages except those that are more

appropriately sent via the Datagram service.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 53 of 91

4.1.3.2 HiQnet Device Addressing

All products need a HiQnet Device Address prior to initiating or receiving

messages across a network. This can be obtained either by „address negotiation‟

or by hard coding. Devices that have negotiated for their initial address must also

be ready to accept an address received via a message from the network.

It is strongly recommended that devices in the HiQnet system have their node

addresses fixed.

4.1.3.3 Negotiating a HiQnet Address

The Device as initially shipped (or factory reset) will see that its HiQnet Address

is zero, so it will set its HiQnet Address to a number between 1 and 65535 and

use broadcast messages to "negotiate" its address with other Devices already on

the network. After that process settles down, the HiQnet Address will be fixed at

that chosen number. Devices never re-negotiate their HiQnet Addresses once they

are non-zero.

The SetAddress message is normally used to set the Device to a specific non-zero

HiQnet Address so that it makes sense and fits into a user's specific numbering

scheme.

4.1.4 DiscoInfo

The DiscoInfo message is central to all Routing Layer activities. For this reason,

we introduce the message early because a basic grasp of its various forms and

uses is essential to understanding almost any aspect of the Routing Layer.

The DiscoInfo message is used to:

 Announce the arrival of a Device on the network.

 Search for other Devices on the network.

 Exchange routing information between Devices.

 Keep a network connection Alive

The DiscoInfo message takes two forms, the Query and Info; these are often

referred to as DiscoInfo(Q) & DiscoInfo(I). The Q indicates that the „Info‟ bit in

the Message Header flags field is zero, the I indicates that the „Info‟ bit is set to

one. The payload is the same for both forms of message, and their usage is now

explained in more detail.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 54 of 91

4.1.4.1 Query

DiscoInfo(Q) is a Get type message which serves two purposes. The primary

purpose is to find a Device on the network; the secondary purpose is to pass onto

the receiving Devices some additional information about the sender.

4.1.4.2 Info

DiscoInfo(I) is a message which may be a reply to a DiscoInfo(Q), or it may be

sent as an informational message. Either way, the primary purpose is to convey

routing information about the sender to the recipient.

4.1.5 NetworkInfo

The Routing Layer has a number of sub-systems that rely on the exchange of

Network-specific information. Within this document, for the purposes of clarity,

this information is referred to generically as „NetworkInfo‟. There is a

NetworkInfo structure for each type of Protocol/Physical media combination. The

Packet Layer is responsible for providing a NetworkInfo structure representing

each of its particular network interfaces. In implementation terms, this is the

means by which the Routing Layer achieves its aim of abstracting different

network architectures. By grouping differences together within a common

structure supplied by the Packet Layer we are able to design and implement the

Routing Layer in a generic manner.

The NetworkInfo structure forms a part of the DiscoInfo message payload and

this is the means by which each Routing Layer communicates network-specific

information between Devices.

So that the Routing Layer may identify what kind of NetworkInfo structure is

attached to a DiscoInfo payload, each type of NetworkInfo is identified via an

enumerated UBYTE. This is called the NetworkID and is enumerated as follows:

 1 – TCP/IP

 2 – Reserved

 3 – Reserved

 4 – RS232

4.1.6 Device Arrival “Announce”

A Device will announce its arrival by transmitting 5 DiscoInfo(I) messages on to

the network at regular 2 second intervals. Prior to transmitting, the Device must

pause for a random period of between 0 and 2 seconds.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 55 of 91

HiQnet Address Negotiation will have been completed before the Device Arrival

procedure executes.

4.1.7 Device Departure “Goodbye”

A Device which has power-fail detection (or can be manually shutdown as in the

case of closing a GUI), must notify other Devices it is communicating with of its

departure from the network via a „Goodbye‟ message. The Goodbye allows the

remaining Devices to free any resources associated with the departing Device

without having to wait for their Keep timeouts to activate the cleanup. In some

situations, such as restarting the Device, this also allows the network to be re-

discovered more quickly.

A Goodbye is NOT sent when a Keep Alive timeout occurs.

The closing Device must unicast the Goodbye message to each Device within its

Routing Table which has a Keep Alive active. After this point the Device is

assumed to be unavailable and not able to receive or send messages. The only

way the Device may re-enter the network, is to follow the same procedure as for a

newly connected Device.

4.2 Device Discovery on Demand

Device Discovery is the name given to locating a specific Device on the HiQnet

network. In doing this, the Routing Layer makes use of the lower layers in the

HiQnet model services supplied by the underlying layers in the HiQnet model

(e.g. TCP/IP on an Ethernet network, Token Network Services on a 485 bus) to

determine the presence of HiQnet compatible Devices residing on a given

network interface. The purpose of this level of discovery is to discover the

network information necessary to address a Device at a particular HiQnet address.

Each Network Interface must be able to specify the HiQnet Device Address that it

can be found on and the Network Address of the Network Interface. A Network

interface may be found on only one Device, but a Device can have more than one

Network Interface. Some types of Network Interface include Ethernet, 485 Token

bus, 232 Full Duplex, etc.

The Device Discovery Algorithm is used when a Device wishes to transmit a

message to another Device, for which it has no available route. This „demand

driven‟ approach minimizes the size of the routing table by only requesting routes

for those Devices that need to be contacted.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 56 of 91

4.2.1 Searching for a Device

This section illustrates the steps required to search for a specific Device on the

network. The Device to search for is identified by its HiQnet Destination Address;

if the Broadcast HiQnet Address is used then the search returns ALL Devices

presently on the network – including those Devices which mistakenly have a

HiQnet address of zero.

1. Search the Routing Table for a route to the required Device. If a route

already exists (the Device Address searched for matches a Device Address

in the table), use it.

2. If no route exists, network-broadcast on the datagram service a

DiscoInfo(Q) message specifying the requested Device in the „HiQnet

Device‟ field.

3. Wait three seconds for a DiscoInfo(I) message(s) to arrive with the HiQnet

Device address which matches that requested in step 2. If the correct

message does not arrive, repeat from step 2 for a maximum of three

attempts. If after three attempts the no matching response has been

received, exit with a „not found‟ error.

4. If a DiscoInfo(I) message is received from the Device being searched for,

create a new entry in the Routing Table using the following information

extracted from the message:

Device Address

Serial Number

Cost

Max Message Size

Network Address

The remaining item, the Interface is expected to be supplied by the Routing Layer

itself – it must know which interface the DiscoInfo(I) came in on.

If the search specified the HiQnet broadcast address, many DiscoInfo(I) messages

may arrive in return to the DiscoInfo(I).

4.2.2 Keep Alive/Device Departure

Having found a Device and established a means of communication with it, the

Routing Layer becomes responsible for tracking the Device‟s continued

participation in the network. If, for whatever reason the Device should become

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 57 of 91

un-contactable, it is the responsibility of the Routing Layer to notify the

Application Layer that the Device has become unavailable. The „keep alive‟

mechanism is the means by which the continued presence of a Device is checked

and monitored.

We strongly advise the use of a guaranteed service (where available) for Keep

Alive.

4.2.2.1 When to initiate Keep Alive

Keep Alives are only triggered by the Hello/Hello(info) messages

4.2.2.2 Keep Alive Period

The Keep Alive Period (KAP) determines the maximum period of inactivity

allowed on a route before it is „timed-out‟ and deemed invalid. A source Device

specifies the KAP it requires of the destination by placing it in all the DiscoInfo

messages it sends.

The Keep Alive Period is specified in milliseconds and has a DataType of

UWORD. The minimum permissible period is 250ms. Normally the KAP is 10

seconds (10000ms).

4.2.2.3 Guaranteed

For each guaranteed connection (such as TCP), a Device must transmit a

DiscoInfo(I) message „KAP‟ milliseconds after it last transmitted a DiscoInfo(I)

or Application Layer message. The period „KAP‟ is the „Keep Alive Period‟ that

was specified in the latest DiscoInfo message received from the source Device.

The destination Device shall time-out a route when it has received no messages

within the timeframe of the Keep Alive Period.

If the connection is terminated to save resources, the keep alive must transfer to

the Datagram service. If at a later time, the guaranteed connection is re-

established the keep alive must move back to guaranteed service.

4.2.2.4 Datagram

For each discovered route that uses the datagram service exclusively (such as

UDP), a Device will unicast a DiscoInfo(I) to the destination „KAP‟ milliseconds

after it last transmitted a DiscoInfo(I) or Application Layer message.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 58 of 91

4.3 Table of Routing Layer Message IDs

DiscoInfo 0x0000 Locates Devices and exchanges routing
information

Reserved 0x0001 Reserved

GetNetworkInfo 0x0002 Gets information on network interfaces

Reserved 0x0003 Reserved

RequestAddress 0x0004 Requests the use of a specific HiQnet Address

AddressUsed 0x0005 Notifies that an HiQnet Address is in use

SetAddress 0x0006 Sets an address (HiQnet & Network)

Goodbye 0x0007 Notifies receiver that the sender is shutting down

Hello 0x0008 Open a session between two HiQnet Devices

4.3.1 DiscoInfo

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICE00000000

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x0000

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

HiQnet Device UWORD Device address of sender

Cost UBYTE Aggregated cost of route back to src

Serial Number BLOCK Sender’s HiQnet Serial Number

Max Message Size ULONG Max Msg size sender can handle

Keep Alive Period UWORD Keep Alive rate in ms

NetworkID UBYTE

NetworkInfo Network specific Network specific info of sender

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 59 of 91

4.3.2 GetNetworkInfo

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICE00000000

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x0002

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Serial Number BLOCK Destination’s Serial Number

INFORMATION MESSAGE:

VERSION UBYTE 2

HEADER LENGTH UBYTE 25

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICE00000000

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x0002

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Serial Number BLOCK Destination’s Serial Number

Number of Interfaces UWORD 2

Max Message Size ULONG Max for size Device/interface

NetworkID UBYTE

NetworkInfo Network specific Network info of Sender

Max Message Size ULONG Max for size Device/interface

NetworkID UBYTE

NetworkInfo Network specific Network info of Sender

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 60 of 91

4.3.3 Request Address

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0x000000000000

DEST. ADDRESS HIQNETADDR 0xFFFF00000000

MESSAGE ID UWORD 0x0004

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

HiQnet Device Address UWORD 0xNNNN

4.3.4 AddressUsed

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xFFFF00000000

MESSAGE ID UWORD 0x0004

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 61 of 91

4.3.5 SetAddress

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x0006

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Serial Number BLOCK 128-bit GUID

New Device Address UWORD 0xNNNN

NetworkID UBYTE

NetworkInfo Network specific Network specific info of sender

4.3.6 Goodbye

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x0007

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Device Address UWORD 0xNNNN

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 62 of 91

4.3.7 Hello Query

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xNNNN00000000

DEST. ADDRESS HIQNETADDR 0xNNNN00000000

MESSAGE ID UWORD 0x0008

FLAGS UWORD 0x0020 (GUARANTEED)

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload… Note, no header extension yet

Session Number UWORD 0xNNNN (not equal to zero)
This Device's newly-invented
session number

FLAG mask UWORD 0xXXXX

See the Sessions chapter discussion. A Hello(Query) does not yet have a header

extension, but the answering Hello(Info) does.

After bootup, a Device will generate a random session number between 1 and

65535. Then, for each new session until the next bootup, the Device will

increment the session number. This avoids accidentally using the same session

number for two consecutive sessions in case of session breakage.

The Hello and Hello(info) message payloads also contain a mask to indicate the

supported header flags.

The minimum support for the flag mask is: 0x01FF (see the Flags chart)

 Bit 0 – Request Acknowledgement

 Bit 1 – Acknowledgement

 Bit 2 – Information

 Bit 3 – Error

 Bit 4 – Reserved

 Bit 5 – Guaranteed

 Bit 6 – Multi-part message

 Bit 7 – Reserved

 Bit 8 – Session Header Extension

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 63 of 91

4.3.8 Hello Info

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xNNNN00000000

DEST. ADDRESS HIQNETADDR 0xNNNN00000000

MESSAGE ID UWORD 0x0008

FLAGS UWORD 0x0124 (100100100)
SESSION+GUARANTEED+INFORMAT
ION

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

SESSION NUMBER UWORD 0xNNNN (not equal to zero) The
DEST Device's session number;
remote Device

Payload…

Session Number UWORD 0xNNNN (not equal to zero)
This Device's newly-invented
session number; the SOURCE
Device

FLAG mask UWORD 0xXXXX

After a session has been established between two Devices, each Device will put

the OTHER Device's session number in all message header extensions before

sending the message to the other Device. Each Device will check all received

messages, and ensure the SESSION NUMBER in the Header Extension matches

its own local session number that it generated for this session.

4.4 Packet Service Layers

The Packet Service Layer interfaces to the Routing layer above and the Reliability

Layer below. The function of the Packet Service Layer is to provide a means of

sending and receiving single HiQnet messages to and from the underlying

network architecture. For example, a Routing Layer may sit upon two Packet

Service Layers, one for TCP/IP and another for RS485.

4.5 TCP/IP Packet Service

HiQnet defines a method for packing multiple messages into a single UDP packet.

TCP/IP based Devices making use of UDP must adhere to this standard to ensure

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 64 of 91

interoperability across TCP/IP based products. Since TCP is stream-based there is

no similar requirement for that protocol.

4.5.1 Reliable (TCP) Packet Service

TCP is a stream-based mechanism, accessed usually via a sockets interface. To

minimize overhead, the programmer may wish to aggregate several messages into

a single buffer (aka packet) and present them to the TCP socket in one hit; this is

an implementation choice for the programmer.

The IANA designation for HiQnet is „HiQnet-port 3804/tcp Harman HiQnet

Port‟.

4.5.2 Datagram (UDP) Packet Service

In HiQnet, a sender has the ability to put several messages together into a UDP

packet and send them. The receiver is expected to have the ability to separate out

these into distinct messages as long as the maximum buffer size on the receiver

has not been exceeded.

The IANA designation for HiQnet is „HiQnet-port 3804/udp Harman HiQnet

Port‟

4.5.3 NetworkInfo

This section describes the „NetworkInfo‟ structure for an IPv4 based Packet

Layer. The Routing Layer relies on the NetworkInfo to describe each network

interface it is bound to. This structure is appended to every DiscoInfo message the

Routing Layer sends out and the information contained within used by each

recipient Device to build its Routing Table. Some GUIs may also display this

information to the user.

In a multi-homed Device, there will be one NetworkInfo structure for each and

every network interface. The NetworkInfo contains the following information:

MacAddr 6 bytes MAC address

DHCP/AutoIP UBYTE 1 = DHCP/AutoIP 0 = Static Addr

IPAddr ULONG IP address

SubnetMask ULONG Subnet mask

Gateway ULONG Gateway address

4.5.3.1 MAC Address

The MAC Address uniquely identifies the network interface associated with the

message payload. On Devices with a single interface, this parameter could be

considered redundant since the Serial Number is typically sent within a message

and is constructed from the Device‟s MAC address. However, on Devices with

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 65 of 91

multiple interfaces, a message may originate from any one of the secondary

interfaces and this MAC address allows the recipient to identify each of them.

4.5.3.2 DHCP Flag

The Routing Layer does not explicitly use the DHCP flag, but this information is

exchanged between Devices for informational purposes where there is a

requirement to show a map of the network, a GUI for example. One exception to

this is the „SetAddress‟ message, which uses the NetworkInfo block to „set‟

whether the Device uses DHCP to obtain an IP address.

4.5.3.3 IP Address

The IP Address identifies the network address of the interface a message came

from. In many cases this will be the same as the source address presented by the

receiving interface. However, when a Device is acting as a proxy for others, this

address will differ to the source presented by the receiving interface. In terms of

implementation, the safest approach is to use this IP Address when it is supplied

in preference to the source address.

4.5.3.4 Subnet Mask

The Routing Layer uses this information to help determine whether it may unicast

to another Device.

4.5.4 Gateway

The Routing Layer does not explicitly use the Gateway parameter, this is

exchanged between Devices for informational purposes where displaying this

information could be useful.

4.5.5 Use Case – Closed loop control of a HiQnet product via
TCP/IP – addressing already fixed.

Suppose you desire to control a HiQnet product via TCP/IP. The Devices all have

their IP addresses and HiQnet addresses already fixed. Assume we have a third-

party control Device (CD) that wants to control a level in a HiQnet product (HP).

In this case, use the following steps

1. Upon booting of the control Device (CD), it will broadcast on port 3804 a

DiscoAnnounce

2. To find the route to the HP, CD will IP broadcast a DiscoQuery with the

HiQnet address of CD in the payload.

3. HP replies with a DiscoInfo – giving CD the route information required

for HP to open a TCP/IP connection to CD

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 66 of 91

4. HP opens a TCP connection to CD on port 3804 and then sends a Hello to

start Keep Alives

5. CD replies back with a HelloInfo

6. HP sends a ParamSubscribe message to CD

7. CD replies with an ParamSet(I) message, synchronizing the value to HP

8. HP is now ready to send ParamSet messages to CD. If any other party

changes the parameter in question, then HP will automatically receive the

change. If HP would like to get a notification that CD has actually

changed the Param, then all ParamSet messages should set the Ack flag.

9. Periodically HP and CD will exchange Keep Alives via TCP based on the

original specified rate.

4.5.6 Use Case – Open Loop control of a HiQnet product via UDP

Suppose you desire to control a HiQnet product via UDP. The Devices all have

their IP addresses and HiQnet addresses already fixed. Assume we have a third-

party control Device (CD) that wants to control a level in a HiQnet product (HP).

In this case, use the following steps

1. Upon booting of the control Device (CD), it will broadcast on port 3804 a

DiscoAnnounce

2. To find the route to the HP, CD will IP broadcast a DiscoQuery with the

HiQnet address of CD in the payload.

3. HP replies with a DiscoInfo – giving CD the route information required

for HP to transmit to CD

4. HP is now ready to send ParamSet messages to CD via UDP

5. Session numbers, Hello(Q/I) and Goobye are not used

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 67 of 91

5 HiQnet String Settings

System Architect has the ability to copy HiQnet strings to the clipboard to

make it easy to use these strings in your control application. The format of the

string that is copied to the clipboard can be customized to meet your needs

and these settings are configured from the HiQnet string settings options.

Make sure that “Enable HiQnet String Visibility” is checked. This turns on the

feature.

If you are controlling the HiQnet device via IP (Ethernet), then select IP. If

you are using serial then select RS232. There are some subtle differences in

the strings that are created by System Architect between IP and RS232.

Depending on how you need the strings formatted, choose either decimal or

hexadecimal, and use the Custom Formatting section to customize further.

Pre-defined custom formatting can be selected by choosing AMX or Crestron

from the “Format” drop down list.

The Source Address is the address of your device. This is the address that the

HiQnet device will reply to.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 68 of 91

Enable “Use Placeholder for Parameter Value” if the HiQnet message string

should include placeholders for the parameter value instead of the current

value for the parameter. See section 2.7.6

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 69 of 91

6 RS232 Packet Service
This section is outlined as follows:

Introduction

Section 1 – Getting Started/Basic Command Structure

Section 2 – Setting Up and Maintaining a Communication Connection

Section 3 – Generating Command Strings via the Network Trace Window

 Using the MultiParameterSet message. Router example.

Section 4 – Calculating Checksums

Section 5 – Feedback

Introduction

 The purpose of this section is to show how to connect to a HiQnet Device

product, generate and format command strings, calculate a checksum, and

receive feedback using the Harman HiQnet Device protocol. This quick guide

is for developers who want to rapidly achieve communications with a HiQnet

Device using an open loop approach. While a closed loop driver would be

desired, some developers may choose to implement an open loop driver. This

document will assist developing an open loop driver to control most aspects of

a HiQnet Device.

Throughout this section specific reference of Object IDs, Parameter IDs, and

Parameter Values are shown. These specific references originate from a dbx

SC. The same principles are used for any HiQnet device.

6.1 Getting Started/Basic Command Structure

This section is for RS232 only, all messages and examples have RS232

formatting included.

IP Connections

 All information contained for RS232 Packet Service Connections is valid

for TCP/IP connections except that no FS, FC, or checksum characters are

transmitted within a command. Also, the TCP/IP connection also does not

need any PING, ACK/NAK, RESYNC/RESYNC_ACK, or Guaranteed ACK

because UDP and TCP have their own link layer. The IP port is 3804.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 70 of 91

6.1.1 Baud Rate

dbx HiQnet Devices are fixed at: 57.6 kbps, 8N1.

6.1.2 Big Endian

Multi Byte data types are sent Big Endian, which means they are send most

significant byte first. If a 16 bit word 0x1234 is sent, it is presented to the

transmit register as 0x12 first then 0x34.

6.1.3 Data Types

UBYTE 8 bits unsigned 0 - 255

UWORD 16 bits unsigned 0 - 65535

ULONG 32 bits unsigned 0 - 4294967295

6.1.4 Resync Request / Resync Acknowledge

The communications protocol uses special characters to synchronize both

ends of the serial connection and to keep the connection open. To synchronize

the serial drivers, Resysnc Request and Resync Acknowledge are used.

 Resynch_Request 0xFF

Resysnc_Acknowledge 0xF0

Since these characters are not accepted from the rest of the protocol, the

resynch procedure will issue a string of Resync_Request and

Resync_Acknowledge bytes to flush the receiving state machine. To

synchronize with a HiQnet Device send 16 Resynch_Request and 261

Resysnc_Acknowledge bytes.

6.1.5 Ping

To maintain a connection, a PING byte lets the other side know that you are

still connected.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 71 of 91

 Ping 0xF0 0x8C

If a message has not been sent within the last second, send a PING. A timeout

of 2.5 seconds will result in the HiQnet Device attempting a resync (0xFF‟s,

0xF0s).

6.1.6 Resync_Acknowledge Byte

Send this byte at the beginning of every command. This byte will keep the

HiQnet Device from attempting a resync when using open-loop

implementation.

Sync 0xF0

6.1.7 Frame Start Bytes

To indicate the start of a frame, two bytes are used. The frame bytes will

always precede a Message Header.

 Frame_Start 0x64

 Frame_Count 0x00, or 0x01-0xFF

For an open loop implementation, use a Frame_Count of 0x00. This indicates

to the receiver that it need not acknowledge the receipt of the message.

6.1.8 Basic Command Structure (Unacknowledged – Open Loop)

Frame Start UBYTE 0x64

Frame Count UBYTE 0x00

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG Length of entire packet (not
including FS FC, or CS bytes)

SOURCE ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 72 of 91

DEST. ADDRESS HIQNETADDR 0xDEVICEVDOBJECT

MESSAGE ID UWORD Specific type of command
issued

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

(Payload)

Checksum UBYTE CCITT-8 (over FS, FC, Header,
Payload)

6.1.9 Number Parameters

How many Parameters are being changed within one Frame.

6.1.10 Parameter_ID

Each control inside an object is assigned a particular Parameter (state

variable) ID. For example, the fader inside a mixer, a particular source inside

a router, or a mute button.

6.1.11 Data_Type

Data types held by the Parameter_Val

Data_Type = 1 for a single unsigned byte of range 0 to 255 (i.e. a Mute

button, or Route) Data_Type = 3 for two unsigned bytes of range 0 to 65535

(i.e. a fader)

6.1.12 Parameter_Val

This variable holds the value of the Parameter_ID in question. For example, if

a Router is the object we want to control, the Parameter_Val will be a single

byte of a value 0(NONE), 1 (Source 1), 2 (Source 2), etc. The Parameter_Val

for a fader within a Mixer object consists of 4 bytes and will hold a float value

between –inf – 20dB].

6.1.13 CCIT checksum

The CCIT checksum is an 8 bit CRC byte used to validate the Header and

Payload. This byte can be calculated by initializing the checksum byte to

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 73 of 91

0xFF and passing each byte though the following calculation. The

Network_CCITT_8_Table is included in the Appendix.

UCHAR update_bcc(UCHAR current_bcc, UCHAR new_byte)

{

return Network_CCITT_8_Table[current_bcc ^ new_byte];

}

The checksum is calculated on all bytes in the Frame, Header, and Payload.

See Calculating Checksum section for detailed information concerning

checksum calculations.

6.2 Setting Up and Maintaining a Communication
Connection

In order to send commands to a Harman HiQnet Device unit from a 3
rd

 party

controller, a connection should be kept alive by the continuous sending and

receiving of specific commands. There are two different levels of “keep-alive”

or “heartbeat” commands that should be continuously exchanged. The first is

a Ping designed to keep the transmission layer connection open. This is done

by sending a 0xF0 0x8C every 1 second. The HiQnet Device will respond

with a 0x8C. If the user desires to only send commands and not receive any

feedback from the HiQnet Device, then only this connection must be

maintained If the 3
rd

 party controller is not capable of parsing commands,

storing independent variables, or receiving commands, then the user may send

pre-formed commands with a 0xF0 preceding all commands. This will open a

connection just long enough for the HiQnet Device to accept a command.

Setting the protocol to RS232 in the HiQnet String Settings (see section will

automatically prefix the message string copied to the clipboard with the

necessary 0xF0.

The second is a Disco command and it is designed to keep a

connection open at the Protocol layer. If a user wants to receive feedback from

the HiQnet Device, a Disco must be sent from the 3
rd

 party controller at least

every 10 seconds to keep this connection open. To initiate a connection with

the HiQnet Device, a Disco Broadcast should be sent. Any HiQnet Device

Devices on this connection will answer back.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 74 of 91

The Disco Broadcast command:

Frame Start UBYTE 0x64

Frame Count UBYTE 0x00

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICE00000000

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x0000 DiscoInfo

FLAGS UWORD

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

HiQnet Device UWORD Device address of sender

Cost UBYTE Aggregated cost of route back to src

Serial Number BLOCK Sender’s HiQnet Serial Number

Max Message Size ULONG Max Msg size sender can handle

Keep Alive Period UWORD Keep Alive rate in ms

NetworkID UBYTE 0x04

NetworkInfo Network specific RS232 NetworkInfo as below

Checksum UBYTE CCITT-8 (over FS, FC, Header,
Payload)

RS232 NetworkInfo is as follows:

COM ID UBYTE Com Port Identifier

Baud Rate ULONG Bits per second, 9600, 57600

Parity UBYTE 0 – None

1 – Odd

2 – Even

3 – Mark

4 – Space

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 75 of 91

Stop Bits UBYTE 0 – 1 Bits

1 – 1.5 Bits

2 – 2 Bits

Data Bits UBYTE Number of bits for data, typically 4-9

Flow Control UBYTE 0 – None

1 – Hardware

2 – XON/OFF

Typical values used in the RS232 NetworkInfo are:

 Baud Rate = 57600

 Parity = 0

 Stop Bits = 1

 Data Bits = 8

 Flow Control = 0

When using the serial port it is suggested that the Source Node (3
rd

 Party

Device) address 0x00 0x33. So the actual command sent out the serial port is:

0xF0 0x64 0x00 0x02 0x19 0x00 0x00 0x00 0x3E 0x00 0x33 0x00 0x00 0x00 0x00 0xFF

0xFF 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x05 0x00 0x00 0x00 0x33 0x01 0x00

0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFD 0x01 0x02 0x03

0x04 0x00 0x00 0x27 0x10 0x4E 0x20 0x04 0x00 0x00 0x00 0xE1 0x00 0x00 0x00 0x08

0x00 0x(checksum byte)

The HiQnet Device will respond to this Disco message with its address

(node). Parse this incoming message in order to get the HiQnet Device‟s

address. Once the address is found you must reply to all incoming Disco

messages (send at least every 10 seconds whether a Disco is received or not)

or the connection will be shut down. The reply is the same message as the

broadcast command, but with the HiQnet Device‟s address inserted in place of

the 0xFF 0xFF. The incoming Disco message will be:

Frame Start UBYTE 0x64

Frame Count UBYTE 0x00

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 76 of 91

MESSAGE LENGTH ULONG 0xNNNNNNNN

SOURCE ADDRESS HIQNETADDR 0xDEVICE00000000

DEST. ADDRESS HIQNETADDR 0xDEVICE00000000

MESSAGE ID UWORD 0x0000 DiscoInfo

FLAGS UWORD 0x0024 (Guaranteed Info)

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Payload…

Node UWORD Node address of sender

Cost UBYTE Aggregated cost of route
back to source

Serial Number BLOCK Sender’s Serial Number

Max Message Size ULONG Max Msg size sender can
handle

NetworkID UBYTE Network type of sender

0x01 = TCP/IP

0x04 = RS232

NetworkInfo Network specific Network specific info of
sender

Checksum UBYTE CCITT-8 (over FS, FC, Header,
Payload)

It will be assumed that in this example if the dbx node address is 0x00 0x20

(decimal 32).

0x64 0x00 0x02 0x19 0x00 0x00 0x00 0x3E 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x33

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x24 0x05 0x00 0x00 0x00 0x20 0x64 0x00 0x10

0x59 0x22 0xF0 0xAA 0x2A 0x0C 0x11 0xDE 0xBE 0x67 0x00 0x0F 0xD7 0x00 0xC0

0x1B 0x00 0x00 0x07 0xD0 0x27 0x10 0x04 0x01 0x00 0x00 0xE1 0x00 0x00 0x00 0x08

0x00 0x0B(checksum)

So the 3
rd

 party controller needs to send the following command for every

incoming Disco (send at least every 10 seconds whether a Disco is received or

not):

0xF0 0x64 0x00 0x02 0x19 0x00 0x00 0x00 0x3E 0x00 0x33 0x00 0x00 0x00 0x00 0x00

0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x20 0x05 0x00 0x00 0x00 0x33 0x01 0x00

0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFD 0x01 0x02 0x03

0x04 0x00 0x00 0x27 0x10 0x4E 0x20 0x04 0x00 0x00 0x00 0xE1 0x00 0x00 0x00 0x08

0x00 0x5F(checksum byte)

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 77 of 91

Once these two “heartbeats” are being continuously exchanged, the

connection is open and the 3
rd

 party controller can send and receive

commands as necessary.

6.2.1 Guaranteed Acknowledgement

 Every command that is sent or received starts with the 0xFS 0xFC start

frame bytes. If the Frame Count (second byte) is anything besides a 0x00,

then it is a guaranteed service message and a 0xA5 must be sent to

acknowledge this message has been received. The HiQnet Device will try and

initiate a re-sync if it doesn‟t receive the 0xA5 Ack for every guaranteed

message sent. The user may send a 0xA5 after every received message if the

user doesn‟t want to deal with guaranteed service requirements.

6.2.2 Resync

 The HiQnet Device will send at least 261 0xFF‟s if it believes it is out of

sync with the controller. The HiQnet Device will not accept any serial

commands in this state. This happens when the 0xF0 0x8C heartbeat or the

Disco commands, is not being sent at required intervals. This will also happen

if a 0xA5 is not received for each guaranteed packet sent.

6.3 Recall 0x0125 (Message ID)

HiQnet devices support recalling preset data. The most common preset to

recall is the scene. To change a scene on a HiQnet Device, issue a recall scene

command (Preset type = 2). If you are using subscriptions, the changed

parameter values will come back to you in multiParameterset messages.

The Workgroup Path and Scope

Frame Start UBYTE 0x64

Frame Count UBYTE 0x00

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0x000000xx

SRC UWORD:ULONG 0xNODEVDOBJECT

DEST UWORD:ULONG 0xNODEVDOBJECT

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 78 of 91

MESSAGE ID UWORD 0x0125

Flags UWORD 0x0000

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

(Payload)

Recall Action UBYTE Scene type 2 for Scene, 3 for
Device preset, 5 for Venue
preset

Recall Number [UWORD] Scene to load, 0 (default), 1,
2, 3…

Workgroup Path STRING 0x00 0x02 0x00 0x00
(Reserved)

Scope UBYTE 0x00 (Reserved)

Checksum UBYTE CCITT-8 (over FS, FC, Header,
Payload)

Here is an example for recalling Device Preset 1.

0xF0 0x64 0x00 0x02 0x19 0x00 0x00 0x00 0x21 0x00 0x33 0x00 0x00 0x00 0x00 0x00

0x20 0x00 0x00 0x00 0x00 0x01 0x25 0x00 0x20 0x05 0x00 0x00 0x03 0x00 0x01 0x00

0x02 0x00 0x00 0x00 0x01 (checksum byte)

6.4 Calculating Checksums

This document will show two ways of calculating checksums. The first

method is using code to perform the checksum operations systematically. The

second method is using a Microsoft Excel Spreadsheet and manually entering

commands into the spreadsheet. The spreadsheet will then calculate the

checksum.

6.4.1 How to calculate a checksum using code for the Harman
HiQnet Device:

//shown in AMX Netlinx syntax

//CCIT copied from “Full Duplex Data Link Specification .PDF”

//$ = hex

CHAR CCIT[] = {$5E,$BC,$E2,$61,$3F,$DD,$83,$C2,$9C,$7E,$20,$A3,$FD,$1F,$41,

$9D,$C3,$21,$7F,$FC,$A2,$40,$1E,$5F,$01,$E3,$BD,$3E,$60,$82,$DC,

$23,$7D,$9F,$C1,$42,$1C,$FE,$A0,$E1,$BF,$5D,$03,$80,$DE,$3C,$62,

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 79 of 91

$BE,$E0,$02,$5C,$DF,$81,$63,$3D,$7C,$22,$C0,$9E,$1D,$43,$A1,$FF,

$46,$18,$FA,$A4,$27,$79,$9B,$C5,$84,$DA,$38,$66,$E5,$BB,$59,$07,

$DB,$85,$67,$39,$BA,$E4,$06,$58,$19,$47,$A5,$FB,$78,$26,$C4,$9A,

$65,$3B,$D9,$87,$04,$5A,$B8,$E6,$A7,$F9,$1B,$45,$C6,$98,$7A,$24,

$F8,$A6,$44,$1A,$99,$C7,$25,$7B,$3A,$64,$86,$D8,$5B,$05,$E7,$B9,

$8C,$D2,$30,$6E,$ED,$B3,$51,$0F,$4E,$10,$F2,$AC,$2F,$71,$93,$CD,

$11,$4F,$AD,$F3,$70,$2E,$CC,$92,$D3,$8D,$6F,$31,$B2,$EC,$0E,$50,

$AF,$F1,$13,$4D,$CE,$90,$72,$2C,$6D,$33,$D1,$8F,$0C,$52,$B0,$EE,

$32,$6C,$8E,$D0,$53,$0D,$EF,$B1,$F0,$AE,$4C,$12,$91,$CF,$2D,$73,

$CA,$94,$76,$28,$AB,$F5,$17,$49,$08,$56,$B4,$EA,$69,$37,$D5,$8B,

$57,$09,$EB,$B5,$36,$68,$8A,$D4,$95,$CB,$29,$77,$F4,$AA,$48,$16,

$E9,$B7,$55,$0B,$88,$D6,$34,$6A,$2B,$75,$97,$C9,$4A,$14,$F6,$A8,

$74,$2A,$C8,$96,$15,$4B,$A9,$F7,$B6,$E8,$0A,$54,$D7,$89,$6B,$35};

//COMMAND COPIED FROM System Architect String Export

CHAR DBX[] =

{$64,$00,$02,$19,$00,$00,$00,$1F,$00,$33,$01,$01,$01,$00,$00,$20,$01,$01,$01,$00,$01,$00,$02,$20

,$05,$00,$00,$00,$01,$00,$02,$01,$01};

BUTTON_EVENT[dvTP,65]

{

PUSH:

 {

 LOCAL_VAR CHAR BCC; //CHECKSUM

 LOCAL_VAR INTEGER I; //LOOP COUNTER

 BCC = $FF; //INITIALIZE CHECKSUM

 FOR (I = 1; I<= LENGTH_ARRAY(DBX);I++)

 {

 BCC = CCIT[(BCC BXOR DBX[I])]; //bitwise XOR each element of command

 }

 }

}

Checksum (BCC) is $08 for the DBX[] command stated in the example;

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 80 of 91

6.4.2 Serial String Method

The System Architect String Export will calculate and append the proper

checksum to every message desired. This tool is useful for checking the

validity of the 3
rd

 party controller checksum method..

6.5 Feedback

Frame Start UBYTE 0x64

Frame Count UBYTE 0x00

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0x000000xx <xx is variable>

SRC UWORD:ULONG 0xNODEVDOBJECT

DEST UWORD:ULONG 0xNODEVDOBJECT

MSG_ID UWORD 0x0113

FLAGS UWORD 0x0000

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

(Payload)

Subscriber Address

Subscription Type

Sensor Rate

Subscription Flags

UWORD:ULONG

UBYTE

UWORD

UWORD

0xNODEVDOBJECT

0-ALL, 1 –Non-Sensor, 2-
Sensor

Period in milliseconds

Bit 0 – ‘1’ Send initial
updates

Checksum UBYTE CCITT-8 (over FS, FC, Header,
Payload)

The HiQnet Device utilizes a command called „subscribe‟ to manage all

feedback traffic. Once a subscribe command has been issued, the HiQnet

Device will send a string containing the current state of the Parameter (or

Parameter‟s) every time the Parameter changes value. This will allow a 3
rd

party controller to get Parameter updates when a user changes values via the

front panel, HiQnet Device GUI, or from another 3
rd

 party controller. The

HiQnet Device will continue to send feedback until a „unsubscribe‟ command

is issued, or until the unit loses power.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 81 of 91

6.5.1 ParameterSubscribeAll

This message is used to subscribe to every State Variable under an Object or

Virtual Device. If this message is sent to a Mixer Object, then a feedback

string will be generated if a user changes any values within that particular

Mixer Object.

The ParameterSubscribeAll command:

Sample String: Subscribing to Router on a SC32 (source address 0x0033, dest

address 0x0020):

0x64 0x00 0x02 0x19 0x00 0x00 0x00 0x24 0x00 0x33 0x01 0x01 0x01 0x00 0x00 0x20

0x01 0x01 0x01 0x00 0x01 0x13 0x02 0x20 0x05 0x00 0x00 0x00 0x33 0x00 0x00 0x00

0x00 0x01 0x00 0x00 0x00 0x01 0xF9

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 82 of 91

Frame Start UBYTE 0x64

Frame Count UBYTE 0x00

VERSION UBYTE 0x02

HEADER LENGTH UBYTE 0x19

MESSAGE LENGTH ULONG 0x000000xx <xx is variable>

SRC UWORD:ULONG 0xNODEVDOBJECT

DEST UWORD:ULONG 0xNODEVDOBJECT

MSG_ID UWORD 0x0114

FLAGS UWORD 0x0000

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Subscription Type UBYTE 0-ALL, 1 –Non-Sensor, 2-
Sensor

Checksum UBYTE CCITT-8 (over FS, FC, Header,
Payload)

6.5.2 ParameterUnSubscribeAll

This message is used to unsubscribe to every State Variable under an Object

or Virtual Device.

The ParameterUnSubscribeAll command:

Sample String: UnSubscribing to Router on a SC32 (source address 0x0033,

dest address 0x0020):

0x64 0x00 0x02 0x19 0x00 0x00 0x00 0x20 0x00 0x33 0x01 0x01 0x01 0x00 0x00 0x20

0x01 0x01 0x01 0x00 0x01 0x14 0x02 0x20 0x05 0x00 0x00 0x00 0x33 0x00 0x00 0x00

0x00 0x01 0x49

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 83 of 91

SRC UWORD:ULONG 0xNODEVDOBJECT

DEST UWORD:ULONG 0xNODEVDOBJECT

MSG_ID UWORD 0x0114

FLAGS UWORD 0x0000

HOP COUNT UBYTE

SEQUENCE NUMBER UWORD

Subscription Type UBYTE 0-ALL, 1 –Non-Sensor, 2-
Sensor

Checksum UBYTE CCITT-8 (over FS, FC, Header,
Payload)

Note: If the HiQnet Device issues a resync request that means the connection

has been shut down, and all Parameter‟s will need to be re-subscribed. All

Parameter‟s will need to be subscribed to whenever the AC power is lost to

the HiQnet Device unit.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 84 of 91

Appendix

IP Connections

 All information contained above for Section 6 RS232 connections is valid

for TCP/IP connections except that no FS, FC, or checksum characters are

transmitted within a command. Also, the TCP/IP connection also does not

need any PING, ACK/NAK, RESYNC/RESYNC_ACK, or Guaranteed ACK

because UDP and TCP have their own link layer. The IP port is 3804.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 85 of 91

7 Sessions
For third party control sessions are optional.

Communication between HiQnet Devices is predicated on the history of messages

having already been sent. Subscriptions need to be established before subscription

values can be sent. After a configuration has been described to another Device,

this configuration is expected to persist. Session IDs ensure that communication

with a particular Device ID has not been broken and that the Device has not

rebooted and re-presented before Keep Alive Period has elapsed.

It is possible that Devices can reboot and present themselves within a Keep Alive

Period. This raises the possibility that messages intended for a previous boot cycle

may be delivered to a Device on its next boot cycle. This is undesirable.

Putting the session number in the header of a HiQnet message allows the

detection of a break in a HiQnet session. If the session number does not match the

session number expected a session break is detected and coherency between the

two Devices is assumed to be lost.

7.1 Starting a Session

A session is opened between two HiQnet Devices with an exchange of

Hello(Query)/Hello(Info) messages. When a Hello arrives, the payload contains

the session number(A) that sending Device has generated for this session. The

response to a Hello(Query) is a Hello(Info) with a payload containing the session

number(B) the answering Device has generated for this session. In the header

extension of the Hello(Info) is the original session number(A).

Once session numbers are exchanged, any message can be guaranteed to be

within the session only if session numbers are checked on a frame per frame

basis. Each Device expects to see its own session number in the header extension

portion of the header of every message it receives.

7.2 Detecting a Session Break

A session number is created to be associated with the destination Device. The

session numbers are transmitted through Hello/Hello(info) messages, creating a

pair of session numbers identifying the session. Purging of messages for previous

sessions is performed when a new session number is presented in either a new

Hello or Hello(info) message or a conflicting session number is found in a HiQnet

Header. Keep Alive is triggered.

Associating a session number with a HiQnet Device ID allows a remote Device to

determine when a new instance of a Device is presented. Specifying a session

number in the HiQnet header allows a session break to be detected. Incoming

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 86 of 91

messages intended for the broken session are discarded, as are outgoing messages

intended for the broken session.

7.3 Characteristics of a Session

The following list represents characteristics of a session:

 Hello/Goodbye messages are bookends for a HiQnet session.

 If a Hello or Hello(info) message arrives while a session is currently open

to the same Node ID, the current session is closed, and the new session

supersedes.

 Hello and Hello(info) messages will trigger Keep Alives.

 Each live session between two Devices has a unique pair of session

numbers for those Devices. If a session with a remote Device is closed and

reopened a new unique session number is used.

 After booting, the first session number shall be random (not the same

session number as on the previous boot cycle).

 If a session number is indicated in the HiQnet Header Flags field, the

session number in the header extension is checked against the session

number that was generated locally when the session was started with the

remote Device. If the session number in the header does not match the

session number that the remote Device is echoing back, the incoming

message is blocked. An error message is sent to the Device that sent the

invalid session number.

 A goodbye message is sent to a Device that sends an invalid session

number in the header extension causing it to be destroyed on the remote

Device. No session number is allowed to be in the header of this goodbye,

since no session exists for this remote Device ID.

 If a Goodbye is sent on an open session, the session number is included in

the header extension.

 On a Keep Alive timeout, the current session is closed. No Goodbye is

sent. Nor is any other message.

 If an error message is returned in response to a Hello message, a

MultiParamGet(NumParams=0) message will be used for backward

compatibility in order to start Keep Alives.

 Hello/Hello(info) must use guaranteed delivery service. The GUAR bit in

the Flags field must be set to 1.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 87 of 91

7.4 Sessions Use Cases

In the following use cases, "Node" means "HiQnet Device." "MultSVSet" means

"MultiParamSet."

Session Number Sequence NULL case

with Socket Cycling

Node 1 session = 3456

(node2SN = 2345)

For some reason, TCP socket

is closed.

MultiSvSet Accepted

(Session still open)

Hello(node2 SN=2345)

MultiSvSet1(SN=3456)

Node 2 session = 2345

(node1 sn = 3456)

MultiSvSet4 generated

Hello-info(node1 SN=3456)

MultiSvSet2(SN=3456)

MultiSvSet3(SN=3456)

MultiSvSet4(SN=3456)

SYN

ACK

SYN/ACK

Disco(R)

Disco(I)

Node 1 Node 2

(Configuration State Syncronization)

FIN

FIN/ACKTime

Null case: socket cycling has no effect

on HiQnet sessions

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 88 of 91

Session Number

Reboot Sequence

Node 1 session = 3456

(node2SN = 2345)

Reboot! TCP fail

Keep for

later

Hello(node2 SN=2345)

MultiSvSet1(SN=3456)

Node 2 session = 2345

(node1 sn = 3456)

MultiSvSet4 still queued

Node 2 session

2345->3456 is destroyed

(no session exists for

Node 2 to talk on)

Node 1 session = 3457

(Node2 SN = 2346)

Hello-info(node1 SN=3456)

MultiSvSet2(SN=3456)

MultiSvSet3(SN=3456)

MultiSvSet4(SN=3456)

!Ses

sion

Block

No

ACK

Resend MultiSvSet4(SN=3456)

SYN

ACK

SYN/ACK

Disco(Q)

Disco(I)

Node 2 session = 2346

(node1 sn = 3457)

Hello(SN=2346)

Hello-info(SN=3457)

Node 1 Node 2

(Configuration State Resync)

(Configuration State Syncronization)

Time

Devices remain coherent,

Messages intended for a previous

sessions are rejected

Error Message sent to Node2

Goodbye destroys the old session

And triggers a new session to be

created

Disco(Anounce)

Goodbye

MultiSvSet4(ERROR !no session)

MultiSvSet5(SN=3457)

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 89 of 91

Session Number

Reboot Sequence 2

Node 1 session = 3456

(node2 session = 2345)

Reboot!

Hello(node2 SN=3456)

MultiSvSet1(SN=2345)

Node 2 session = 2345

(node1 session = 3456)

Node 2 session

2345->3456 is destroyed
Node 1 session = 3457

(Node2 session = 2346)

Hello-info(node1 SN=2345)

MultiSvSet2(SN=2345)

MultiSvSet3(SN=2345)

Disco(Q)

Disco(I)

Node 2 session = 2346

(node1 session = 3457)

Node 1 Node 2

(Configuration State Syncronization)

Time

Devices remain coherent

Hello message triggers the end

of a session opened by a

previous instance

Disco(Q)

Disco(I)

Hello(node2 SN=3457)

Hello-info(node1 SN=2346)

(Configuration State Syncronization)

MultiSvSet4(SN=2346)

When conflicting session 3457 is presented by node 1, no error is generated. The new

session supersedes the old session.

 HiQnet Third Party Programmer Documentation

© HARMAN 19 February 2013
 Page 90 of 91

END OF DOCUMENT

