

1 of 6

v1.0

1-Sep-20

This is often referred to as using "SEND_STRING 0's" in your code. Strings sent to device 0 (the master), port 1 or

port 0, system 0 (the local system) will show up in a terminal or Telnet session once the programmer has typed in

'MSG ON'<enter> at the prompt.

For example, if this line is in your code:

SEND_STRING 0,'some message'

your terminal will display something like:

(0100636312) some message

when the code executes.

The 13 characters to the left of the message are called the "time stamp" or "tic time". Also, by default, the master

will append a carriage return and line feed to the end of each string.

If the master is v2.10.81 or higher, there are additional MSG ON modes:

1. All messages with tic time. This is the same as 'MSG ON' with no type.

2. SEND_STRING 0 only (no tic time in front of string and no CR and LF appended).

3. SEND_STRING 0 with tic time pre-pended to string. Example:

MSG ON 2<enter> sets the message mode to 2.

To turn off these messages type 'MSG OFF'<enter>.

The SEND_STRING 0 message is obviously completely customizable - whatever is typed in will be what you are going

to get.

This can be used as a way to see the value of variables at specific points in the code, by sending that information from

that point, instead of stopping execution with a breakpoint. This is especially useful if programmers have to watch non-

printable data bytes that only show as blank boxes in Windows programs, the SEND_STRING 0 code can reformat

the data as a string of printable ASCII characters.

The attached 'DEV_TO_STRING.axi' and debug.axi' files contain subroutines useful for this type of debugging and

other purposes, e.g. DEV_TO_STRING and STRING_TO_DEV are useful for passing DEV information between

masters via a virtual device in a master-to-master scenario. Theses subroutines were created as an AXI so

programmers could use a #INCLUDE at the top of the program rather than having to dig through the old programs

and find the appropriate code to cut and paste.

The subroutines include, but are not limited to:

1) FUNCTION CHAR[17] DEV_TO_STRING (DEV dvDEV) Formatting NetLinx device structures as strings

take a little more than the simple ITOA(<device>) that was done in Axcess. This function takes a DEV and returns a

2 of 6

string in the '<number>:<port>:<system>' format. <system> will contain the actual system number, not 0, if the

device is so defined.

2) FUNCTION CHAR[25] DEVCHAN_TO_STRING (DEVCHAN dcDC) This function returns a DEVCHAN

as a string with brackets in the format '[<number>:<port>:<system>,<chan>]'. <system> will contain the actual

system number, not 0, if the device is so defined.

3) FUNCTION CHAR[25] DEV_CHAN_TO_STRING (DEV dvDEV, INTEGER nChannel) Same as

DEVCHAN_TO_STRING but takes a separate DEV and INTEGER as parameters. Returns

'[<number>:<port>:<system>,<chan>]'. <system> will contain the actual system number, not 0, if the device is so

defined.

4) FUNCTION CHAR[25] DEVLEV_TO_STRING (DEVLEV dlDL) This function returns a DEVLEV as a

string in the format '<number>:<port>:<system>,<lev>'. <system> will contain the actual system number, not 0, if

the device is so defined.

5) FUNCTION CHAR[25] DEV_LEV_TO_STRING (DEV dvDEV, INTEGER nLevel) Same as

DEVLEV_TO_STRING but takes a separate DEV and INTEGER as parameters. Returns

'<number>:<port>:<system>,<lev>'. <system> will contain the actual system number, not 0, if the device is so

defined.

6) FUNCTION printToDebug (dvDEBUG,STR1[],STR2[],nLine,nMode,nFormat) dvDEBUG is the

destination device for the string. It could be the local master, a virtual device on the local system (see TN435), an IP

device, serial device, etc.… STR1 is a header sent with each line - this is a good place to use DEV_TO_STRING.

STR2 is data. Data bytes < $20 (ASCII control codes) and > $7E (~) are formatted as hex and separated by commas.

As of v2.01, a space ($20) is no longer added between STR1 and STR2. nLine is the line length. This may need to be

changed if a terminal with a line length other than the typical 80 characters is being used. If not, just leave it as 0 for the

defaults. If nMode is 2, nLine defaults to 80, else nLine defaults to 67 to allow 13 characters for the tic time. nMode

is the mode, if "MSG ON 2" mode is being used to set it to 2; otherwise, use 0 for the defaults.

nFormat is the format desired for STR2. 5 formats are supported:

0 – PRINT_UNFORMATTED

1 – PRINT_ASCII_HEX Printable characters are printed with unformatted. Control characters and bytes >= $7F are

formatted as 2 digit hexadecimal.

2 – PRINT_HEX All bytes are formatted as 2 digit hexadecimal.

3 – PRINT_DECIMAL All bytes are formatted as 3 digit decimal.

4 – PRINT_ASCII_EXT Control characters less than $20 are formatted as 2 digit hexadecimal. All other bytes are

printed without formatting.

7) FUNCTION printDEVICE_INFO (dvDEBUG,hdr,dvDEV) This subroutine is designed format the results of a

DEVICE_INFO() query into readable strings. dvDEBUG is the destination device for the strings. It could be the local

master, a virtual device on the local system (see TN435), an IP device, serial device, etc.…

hdr is a header printed with each line of device info.

dvDEV is the device from which to get the info.

3 of 6

8) FUNCTION printCUSTOM_EVENT (dvDEBUG,hdr,nLine,nMode)

This subroutine is designed to be called inside of a CUSTOM_EVENT response to a G4 button status query. It will

format the results of the query into readable strings. dvDEBUG is the destination device for the strings. It could be the

local master, a virtual device on the local system (see TN435), an IP device, serial device, etc.…

hdr is a header printed with each line of custom event info.

nLine is the line length. This may need to be changed if a terminal with a line length other than the typical 80 characters

is being used. If not, just leave it as 0 for the defaults. If nMode is 2, nLine defaults to 80, else nLine defaults to 67 to

allow 13 characters for the tic time.

nMode is the mode, if "MSG ON 2" mode is being used to set it to 2; otherwise, use 0 for the defaults.

9) FUNCTION printMidiDebug (dvDEBUG,STR1[],STR2[],nLine,nMode,nStatus)

dvDEBUG is the destination device for the string. It could be the local master, a virtual device on the local system (see

TN435), an IP device, serial device, etc.…

STR1 is a header sent with each line - this is a good place to use DEV_TO_STRING.

STR2 is data. MIDI channel message data bytes are formatted as 3-digit decimal, separated by commas. MIDI status

bytes and data bytes for MIDI system messages are formatted as 2-digit hex, separated by commas. nLine is the line

length. This may need to be changed if a terminal with a line length other than the typical 80 characters is being used. If

not, just leave it as 0 for the defaults. If nMode is 2, nLine defaults to 80, else nLine defaults to 67 to allow 13

characters for the tic time.

nMode is the mode, if "MSG ON 2" mode is being used to set it to 2; otherwise, use 0 for the defaults.

nStatus is the current MIDI status byte. If the value is $F0 or higher it is a MIDI system message and bytes < $80 will

be formatted as hex, otherwise they will formatted as decimal.

10) FUNCTION STRING_TO_DEV (Txt[], dvDEV)

Takes ASCII string Txt[] of the form '<dev>' or '<dev>:<port>:<sys>' and stores this as a DEV. The dev data in

Txt[] can be embedded in other non-numeric characters. If Txt[] does not contain any numerals, dvDEV will default

to 0:1:0 (the local master).

11) Deprecated subroutines

The subroutines below can still be used for now. They have been rewritten as wrappers for the functions that replaced

them.

a) CALL 'SEND 131 BYTE PACKETS TO MASTER' (sSTRING[]) deprecated

Replaced by printToDebug()

Strings sent to the master will be truncated if they are longer than 131 bytes. This call breaks the strings up if they are

longer than 131 bytes. Otherwise, it does not modify the string. Use with master v2.10.81 or higher "MSG ON 2"

mode to see only the data in the sSTRING. As of v2.51, this call no longer parses sString[] destructively, that is, it

does not modifiy the array passed in.

4 of 6

b) CALL 'SEND ASCII/HEX TO DEBUG' (dvDEBUG,STR1[],STR2[],nLine,nMode) deprecated

Replaced by printToDebug()

dvDEBUG is the destination device for the string. It could be the local master, a virtual device on the local system (see

TN435), an IP device, serial device, etc.…

STR1 is a header sent with each line - this is a good place to use DEV_TO_STRING.

STR2 is data. Data bytes < $20 (ASCII control codes) and > $7E (~) are formatted as hex and separated by commas.

As of v2.01, a space ($20) is no longer added between STR1 and STR2. nLine is the line length. This may need to be

changed if a terminal with a line length other than the typical 80 characters is being used. If not, just leave it as 0 for the

defaults. If nMode is 2, nLine defaults to 80, else nLine defaults to 67 to allow 13 characters for the tic time.

nMode is the mode, if "MSG ON 2" mode is being used to set it to 2; otherwise, use 0 for the defaults.

c) CALL 'SEND DECIMAL TO DEBUG' (dvDEBUG,STR1[],STR2[],nLine,nMode) deprecated

Replaced by printToDebug()

dvDEBUG is the destination device for the string. It could be the local master, a virtual device on the local system (see

TN435), an IP device, serial device, etc.…

STR1 is a header sent with each line - this is a good place to use DEV_TO_STRING.

STR2 is data. All data bytes are formatted as 3 digit decimal and separated by commas. As of v2.01, a space ($20) is

no longer added between STR1 and STR2.

nLine is the line length. This may need to be changed if a terminal with a line length other than the typical 80 characters

is being used. If not, just leave it as 0 for the defaults. If nMode is 2, nLine defaults to 80, else nLine defaults to 67 to

allow 13 characters for the tic time.

nMode is the mode, if "MSG ON 2" mode is being used to set it to 2; otherwise, use 0 for the defaults.

d) CALL 'SEND DEVICE_INFO TO DEBUG' (dvDEBUG,dvDEV) deprecated

Replaced by printDEVICE_INFO()

This subroutine is designed format the results of a DEVICE_INFO() query into readable strings. dvDEBUG is the

destination device for the strings. It could be the local master, a virtual device on the local system (see TN435), an IP

device, serial device, etc.…

dvDEV is the device from which to get the info.

e) CALL 'SEND CUSTOM_EVENT DATA TO DEBUG' (dvDEBUG) deprecated

Replaced by printCUSTOM_EVENT()

This subroutine is designed to be called inside of a CUSTOM_EVENT response to a G4 button status query. It will

format the results of the query into readable strings. dvDEBUG is the destination device for the strings. It could be the

local master, a virtual device on the local system (see TN435), an IP device, serial device, etc.…

5 of 6

f) CALL 'SEND MIDI TO DEBUG' (dvDEBUG,STR1[],STR2[],nLine,nMode,nStatus) deprecated

Replaced by printMidiDebug() dvDEBUG is the destination device for the string. It could be the local master, a

virtual device on the local system (see TN435), an IP device, serial device, etc.…

STR1 is a header sent with each line - this is a good place to use DEV_TO_STRING.

STR2 is data. MIDI channel message data bytes are formatted as 3-digit decimal, separated by commas. MIDI status

bytes and data bytes for MIDI system messages are formatted as 2-digit hex, seperated by commas.

nLine is the line length. This may need to be changed if a terminal with a line length other than the typical 80 characters

is being used. If not, just leave it as 0 for the defaults. If nMode is 2, nLine defaults to 80, else nLine defaults to 67 to

allow 13 characters for the tic time.

nMode is the mode, if "MSG ON 2" mode is being used to set it to 2; otherwise, use 0 for the defaults.

nStatus is the current MIDI status byte. If the value is $F0 or higher it is a MIDI system message and bytes < $80 will

be formatted as hex, otherwise they will formatted as decimal.

g) CALL 'STRING TO DEV' (Txt[], dvDEV) deprecated

Replaced by STRING_TO_DEV()

Takes ASCII string Txt[] of the form '<dev>' or '<dev>:<port>:<sys>' and stores this as a DEV. The dev data in

Txt[] can be embedded in other non-numeric characters. If Txt[] does not contain any numerals, dvDEV will default

to 0:1:0 (the local master).

See the debug.axi and DEV_TO_STRING.axi source code for additional subroutines not listed here. Also see

TN875 - it includes a device debugging module based on these concepts.

In order to use these subroutines, debug.axi must be in the compile path. It is suggested that an "AXIs" folder in the

My Documents folder be created, save debug.axi there, then add that path to NetLinx Studio

"Edit/Preferences/Netlinx Compiler Options/Include Files". Then add the lines:

#INCLUDE 'DEV_TO_STRING.axi'

#INCLUDE 'debug.axi'

to the source code.

