

1 of 7

[Comments]

29-Jul-20

RS-232 was created for one purpose, to interface between Data Terminal Equipment (DTE) and Data Communications

Equipment (DCE) employing serial binary data interchange. So as stated the DTE is the terminal or computer and the

DCE is the modem or other communications device.

The Electronic Industries Association (EIA) originally adopted RS-232 in 1960. The standard evolved over the years and

in 1969 the third revision (RS-232C) was to be the standard of choice of PC makers. In 1987 a fourth revision was

adopted (RS-232D also known as EIA-232D). For the most part this new revision added 3 additional test lines. In this

document we will work with the original RS-232C standard, which is the one used in the PC world.

Most equipment using RS-232 serial ports use a DB-25 type connector even though the original documents didn't specify

a connector. Many PCs today use DB-9 connectors since all you need in asynchronous mode is 9 signals. But take note

that the document does specify the amount of pins and their assignment: 20 affected to different signals; 3 are reserved;

and 2 are not affected. Normally the male connector is on the DTE side and the female connector is on the DCE side,

but this is not always the case.

The concept behind serial communications is as follows; data is transferred from sender to receiver one bit at a time

through a single line or circuit. The serial port takes 8, 16 or 32 parallel bits from your computer bus and converts it as

an 8, 16 or 32 bit serial stream. The name serial communications comes from this fact; each bit of information is

transferred in series from one location to another. In theory a serial link would only need two wires, a signal line and a

ground to move the serial signal from one location to another. But in practice this doesn't really work over time. Some

bits might get lost in the transmission and thus alter the ending result. If one bit is missing at the receiving end, all

succeeding bits are shifted resulting in incorrect data when converted back to a parallel signal. So to establish reliable

serial communications you must overcome these bit errors that can emerge in many different forms.

Two serial transmission methods are used to correct serial bit errors. One is synchronous communication, the sending

and receiving ends of the communication are synchronized using a clock that precisely times the period separating each

bit. By checking the clock the receiving end can determine if a bit is missing or if an extra bit (usually electrically induced)

has been introduced in the stream.

An example of this method of communication: Let’s say that on a conveyor belt a product is passing through a sensing device every

5 seconds. If the sensing device senses something in between the 5-second interval it assumes that whatever is passing is a foreign

object of some sort and sounds an alarm. If on the 5-second interval nothing goes by, it assumes that the product is missing and

sounds an alarm.

One important aspect of this method is that if either end of the communication loses its clock signal, the communication

is terminated.

The alternative method is known as asynchronous communication. This is the method used most often in PCs. This

method adds markers within the bit stream to help track each data bit. By introducing a start bit which indicates the

start of a short data stream, the position of each bit can be determined by timing the bits at regular intervals. By sending

2 of 7

start bits in front of each 8-bit stream, the two systems don't have to be synchronized by a clock signal. The only

important issue is that both systems must be set at the same port speed. When the receiving end of the communication

receives the start bit it starts a short-term timer. By keeping streams short, there's not enough time for the timer to get

out of sync. This method is known as asynchronous communication because the sending and receiving end of the

communication are not precisely synchronized by the means of a signal line.

Each stream of bits is broken up in 5 to 8 bits called words. Usually in the PC environment you will find 7 or 8 bit

words, the first is to accommodate all upper and lower case text characters in ASCII codes (the 127 characters) the

latter one is used to exactly correspond to one byte. By convention, the least significant bit of the word is sent first and

the most significant bit is sent last. When communicating the sender encodes the each word by adding a start bit in front

and 1 or 2 stop bits at the end. Sometimes it will add a parity bit between the last bit of the word and the first stop bit,

this used as a data integrity check. This is often referred to as a data frame.

Five different parity bits can be used:

The mark parity bit is always set at a logical 1.

The space parity bit is always set at a logical 0.

The even parity bit is set to logical 1 by counting the number of bits in the word and determining if the result is even.

In the odd parity bit, the parity bit is set to logical 1 if the result is odd.

The latter two methods offer a means of detecting bit level transmission errors.

A non parity bit frame uses no parity bits, thus eliminating 1 bit in each frame.

Asynchronous Serial Data Frame (8E1)[fig.1]

 In the example above you can see how the data frame is composed of and synchronized with the clock signal. This

example uses an 8-bit word with even parity and 1 stop bit also referred to as an 8E1 setting.

 Another important part of every asynchronous serial signal, is the bit rate at which the data is transmitted. The rates at

which the data is sent is based on the minimum speed of 300 BPS (bits per second), you may find some slower speeds of

50, 100 and 150 BPS, but these are not used in today’s technology. Originally, faster speeds were all based on the 300

BPS rate. You merely doubled the preceding rate, so the rates were as follows, 600, 1200, 2400, 4800, 9600, 19200 and

38400. In the late 1990’s the maximum communication rate by standard dial-up modem was 56,000 BPS. Because of this

the doubling rule was violated to create the 57,000 rate between PCs and modems that supported the 56K rate. Prior

to this the 38,400 rate was the fastest speed supported by today’s BIOS’s. Note that a few years ago the fastest speed

was of 19200 BPS, due to the strain exercised on the CPU because of the software control used to control the serial

3 of 7

port. Today with the new Micro Channel, EISA, VL Bus and PCI motherboards, the new systems take advantage of bus

mastering DMA control, which have pushed rates up to 38,400 by eliminating microprocessor overhead. By bypassing

the BIOS all together and controlling the hardware directly, you can obtain greater speeds.

Here is the list of all signals specified in the RS232C standard. Each signal is identified by its letters, V.24 equivalent

(CCITT), pin

number on a DB-25 and DB-9 connector and its signal name. The circuit letters associated to each signal are devised by

the following:

If the first letter is A, this is a common circuit

If the first letter is B, this is a signal circuit

If the first letter is C, this is a control circuit

If the first letter is D, this is a timing circuit

If the letters are preceded by an S, this is a secondary channel

CIRCUIT V.24 Circuit # DB-25 Pin # DB-9 Pin # Signal Name

AA 101 1 - Protective Ground

AB 102 7 5 Signal Ground

BA 103 2 3 Transmitted Data

BB 104 3 2 Received Data

CA 105 4 7 Request to send

CB 106 5 8 Clear to send

CC 107 6 6 Data set ready

CD 108 20 4 Data terminal ready

CE 125 22 9 Ring detector

CF 109 8 1 Carrier detect

CG 110 21 - Signal quality detect

CH/CI 111/112 23 - Data signal rate selector

DA 113 24 - Transmitter signal timing (DTE)

DB 114 15 - Transmitter signal timing (DCE)

DD 115 17 - Receiver signal timing

SBA 118 14 - Secondary TX

SBB 119 16 - Secondary RX

SCA 120 19 - Secondary RTS

SCB 121 13 - Secondary CTS

SCF 122 12 - Secondary CD

 9 - Reserved Positive test

 10 - Reserved Negative test

 11 - N/C

 18 - N/C

 25 - N/C

4 of 7

This line is connected to the power ground of the serial adapter. It should not be used as signal ground. Connect this

line to the screen of the lead wire (if applicable). By connecting this line on both sides you make sure that no large

currents flow through the signal ground in case of an insulation defect or other defect on either side. On the other side,

when great distances separate two devices you may not wish to use this signal, because of different ground potential and

it is possible that it may carry a substantial current as a ground loop. If it is great enough, it may cause electrical

interference.

This is the logical ground, which is used as a point of reference for all signals received or transmitted. This signal is very

important and must be present for all communications.

This line is used to transmit data from the DTE to the DCE. It is maintained at a logical 1 state when nothing is

transmitted. The terminal will start to transmit when a logical 1 is present on all of the following lines:

Clear To Send

Data Terminal Ready

Data Set Ready

Data Carrier Detect

The standard specifies the output levels as being -5 to -15 Volts for logical 1 and +5 to +15 Volts for logical 0, and the

input levels as being -3 to -15 Volts for logical 1 and +3 to +15 Volts for logical 0. This ensures data bits to be read

correctly even at maximum lengths between DTE and DCE, which is specified as 50 feet although you could probably go

much greater distances. As you may have noticed, logical 1 are represented by a negative tension and vice versa. There's

no particularly good reason for the inversion except that it's the way things have always been done, why change when it

works!

This circuit is used to receive data from the DCE to the DTE. The terminal will start to transmit when a logical 1 is

present on all of the

following lines:

Request To Send

Data Terminal Ready

Data Set Ready

Data Carrier Detect

5 of 7

On this line, the DTE will send a signal when it wants to receive data from the DCE.

Here the DCE will send a signal when it's ready to receive data from the DTE. (ex. When your local modem connects

to an other modem via telephone lines).

At a logical level of 1, this line indicates to the DTE that the DCE is ready to send data. (ex. When a modem has

established a connection with a remote modem and is in transmission mode).

When a logical level 1 is sent from the DTE the DCE can start to send and receive data. When this line passes to logical

level 0 the DCE will stop all communications. (ex. A modem would stop all communications and would disconnect from

the line, you will often see "DROP DTR" in communication programs).

On this line the DCE indicates to the DTE that it has established a carrier with a remote device.

This line is used mostly by communications software when the modem is not in "auto answer" mode and will indicate to

the software that a remote device is calling. This is signal is optional when not using software that will answer a phone

call automatically.

This line although rarely used serves to indicate to the DTE that the quality of the signal is poor or just not good enough

to keep a good connection.

In the case where a modem able of multiple connection rates, the DTE could choose the speed at which it is connected.

Usually this line is kept a logical level 0, which selects the highest speed.

This signal is the same as CH but in this case the modem selects the speed at which the DTE communicates.

In synchronous mode, it is necessary to have some way to exchange clock signals, here are three timing circuits used in

the RS-232 protocol.

6 of 7

These two circuits are used to synchronize the flow of data. Timing is given by the DTE or DCE, but never from both at

the same time. Usually data is transmitted to the modem or it's own clock control on the DB circuit.

This circuit is used to synchronize data received from the DTE. The clock signal received on this line indicates to the

DTE at which instant to sample the received data on the BB line.

