AMX Corporation
White Paper

CONVERTING AXCESS CoODE TO NETLINX CODE

MARCH 2003

Converting Axcess Code to NetLinx Code

Table of Contents

Converting Axcess Code to NetLinX Code.........cccovveieieeiiiieesice e 1
TaDIE Of CONLENLS.......ceiieeieiiee et e b et e e sreene et e nreeneeeneennn 2
OVEIVIBIW ...ttt b e bbbttt et bbbt bt bt e ae e st e e et e b et e seeebenbeenenneenean 3
Compiling AXCesS COOE FOr NEILINX.......ccuiiiiiiiiieieeee e 3
RESEIVEA [BNLITIES. ... et 3
NELLINX PrE-PrOCESSON........eiueeieeeeeesiesieete sttt b et be e eae e e s sn e b e b aeene s 3
NELLINX CONSLANES. ... c.veiveevieiieieriesie ettt s se st e et st besbesse e nneenes 3
NEELINX SITUCIUMNES ...ttt sttt st esre et e e s e ste et e sneenee e 4
NELINX VariabI@ YPEScoueeeieeesete e 4
NELLINX VaTADIES.......coiiiiiiee et st 4
NELLINX KEYWOITS........iiieieiiiieiieie ettt e 4
NELLINX FUNCEIONS. ...ttt s 5
DEFINE _DEVICE.......o oottt sttt aesaesaestesnennenneas 7
DEFINE_CONSTANT Lottt sttt see e sae st sse s s s e eeesaeseestessesnensens 8
DEFINE_VARIABLE ...ttt sttt snennenneas 9
DEFINE_CALL ottt sttt ne e e nne s 10
[N Y 1 SO 10
SYNEAX RUIES......ccueeeeeecte ettt e e e aesae e sreenesaeesneenreeneenns 11
KEYWOIrd CRANGESc.eeiuiiiiieeieiesie ettt b sttt sr b ene e 12
WWHILE ..ottt bttt bbbt et e et st e b et st be e 12
Order Of OPEIATIONccueeuieieeeeeereeste sttt bttt e b eas 12
GELtING YOUN COUE O FUN......covieiiceeecteeie ettt ettt ste s sreesne e sneereeneeenis 13
MOFE INFOIMIBLIONc.veeeieeieeie ettt st se e ae e e sreeeesneesneensens 13

Converting Axcess Code to NetLinx Code 2

Overview

When AMX designed the NetLinx control system, the goal was to upgrade the processor,
bus and to greatly improve the power of the programming language. Originally named
Axcess2, the new language was designed to be a superset of the Axcess programming
language. NetLinx contains all of the elements of Axcess.

Y ou cannot compile NetLinx code on an Axcess compiler, and likewise, you cannot
download NetLinx code to an Axcess control system. To upgrade existing Axcess control
system to NetLinx you have to upgrade the Axcess master to a NetLinx master. Y ou can
still use the existing Axcess equipment as long as you can disable the existing Axcess
Central Controller.

Compiling Axcess code for NetLinx

In order to compile your existing Axcess code on NetLinx, minor modifications will
most likely be required. These include identifier names that conflict with NetLinx
identifiers, warning on variable type conversion, and stricter syntax rules.

Reserved ldentifiers

Netlinx includes many new identifiers that may have been used in your AXxcess program.
When converting your Axcess to code to NetLinx, you will need to replace any use of
these NetLinx identifiers with adifferent identifier. Below isalist of identifiers new to
NetLinx.

NetLinx Pre-processor

__LDATE__
" NETLI NX_
#1 NCLUDE

NetLinx Constants

DO_PUSH_TI MED_| NFI NI TE
FI RST_LOCAL_PORT

FI RST_VI RTUAL_DEVI CE

| P_Addr _Fl g_DHCP

NETLI NX_AXI _VERSI ON
SOURCE_TYPE_AXLI NK
SOURCE_TYPE_| P_ADDRESS
SOURCE_TYPE_| P_SOCKET _ADDRESS
SOURCE_TYPE_NEURON | D

SOURCE_TYPE_NEURON_SUBNODE_| CSP

SOURCE_TYPE_NEURON_SUBNODE_PL
SOURCE_TYPE_NO_ADDRESS

Converting Axcess Code to NetLinx Code 3

SQURCE_TYPE_RS232

TI MELI NE_ABSOLUTE

TI MELI NE_ONCE

TI MELI NE_RELATI VE

TI MELI NE_REPEAT

URL_Fl g_Stat _Connect ed
URL_Fl g_Stat _Connecti ng
URL Fl g_Stat Lookup
URL_Fl g_Stat _Mask

URL_Fl g_Stat _PrgNet Li nx
URL Flg_Stat Wiiting
URL_Flg TCP

URL_Fl g_Tenp

NetLinx Structures

DEV_| NFO_STRUCT
DNS_STRUCT

| P_ADDRESS_STRUCT
TBUTTON

TCHANNEL

TDATA

TLEVEL

TTI MELI NE
URL_STRUCT

NetLinx Variable types

NON_VOLATI LE
VOLATI LE
PERSI STENT
CHAR

W DECHAR

| NTEGER

SI NTEGER
LONG
SLONG
FLOAT
DOUBLE

DEV
DEVCHAN
DEVLEV

NetLinx Variables

BUTTON
CHANNEL

DATA
DV_CHANNEL
LDATE

LEVEL
MASTER SN
PUSH_DEVCHAN
RELEASE_DEVCHAN
SYSTEM NUMVBER
TI MELI NE

NetLinx Keywords

BREAK
BUTTON_EVENT
CASE
CHANNEL_EVENT

Converting Axcess Code to NetLinx Code

COVBI NE_CHANNELS
COVBI NE_DEVI CES
COMVBI NE_LEVELS
COVIVAND
COVPARE_STRI NGS
CONSTANT
DATA_EVENT
DEFACLT

DEFI NE_EVENT

DEFI NE_FUNCTI ON
DEFI NE_MODULE
DEFI NE_TYPE

DEVI CE_I D_STRI NG
DO_PUSH_TT MED

FI RST_LOCAL_PORT
FOR

HOLD

LDATE
LEVEL_EVENT

LSH FT

MASTER SN

MOD

MODULE_NANE

OFFLI NE

ONERROR

ONLI NE
PUSH_DEVCHAN
REBOOT
RELEASE_DEVCHAN
REPEAT

RETURN

RSHI FT

STACK_VAR

STRI NG

STRUCTURE

SW TCH

SYSTEM NUVBER

TI MED_WAI T_UNTI L
TI MELT NE_EVENT
UNCOVBI NE_CHANNELS
UNCOVBI NE_DEVI CES
UNCOVBI NE_LEVELS

NetLinx Functions

ABS_VALUE
ADD_URL_ENTRY
ASTRO_CLOCK

ATOF

ATOL

COVPARE_STRI NG
DATE_TO DAY
DATE_TO_MONTH
DATE_TO_YEAR
DAY_OF WEEK
DELETE_URL_ENTRY
DEVI CE_I D_STRI NG
DEVI CE_| NFO
DO_PUSH_TI MED

FI LE_CLOSE

FI LE_COPY

FI LE_CREATEDI R
FI LE_DELETE
FILE DI R

Converting Axcess Code to NetLinx Code

FI LE_GETDI R
FI LE_OPEN

FI LE_READ

FI LE_READ LI NE

FI LE_REMOVEDI R

FI LE_RENAME

FI LE_SEEK

FI LE_SETDI R

FI LE_WRI TE

FI LE_WRI TE_LI NE

FORMAT

FTOA

GET_BUFFER_STRI NG
GET_DNS_LI ST

GET_| P_ADDRESS
GET_LAST

GET_SERI AL_NUMBER
GET_SYSTEM NUMBER
GET_UNI QUE_I D
GET_URL_LIST

HEXTO

| P_CLI ENT_CLOSE

| P_CLI ENT_OPEN

| P_MC_SERVER_OPEN

| P_SERVER CLOSE

| P_SERVER_OPEN
LENGTH_ARRAY
LENGTH_VARI ABLE_TO_STRI NG
LENGTH_VARI ABLE_TO_XM.
MAX_LENGTH_ARRAY
MAX_LENGTH_STRI NG
MAX_VALUE

M N_VALUE

RAW BE

RAW LE

REBCOT

REDI RECT_STRI NG
SET_DNS LI ST

SET_| P_ADDRESS
SET_LENGTH_ARRAY
SET_OUTDOOR TEMPATURE
SET_OUTDOOR_TEMPERATURE
SET_SYSTEM NUMBER
SET_VALI| DATI ON_CODE
SET_VI RTUAL_CHANNEL_ COUNT
SET_VI RTUAL_LEVEL_COUNT
SET_VI RTUAL_PORT_COUNT
STRING_TO VARI ABLE

TI ME_TO_HOUR

TI ME_TO_M NUTE

TI ME_TO_SECOND

TI MELI NE_ACTI VE

TI MELI NE_CREATE

TI MELI NE_DYNAM C | D

TI MELI NE_GET

TI MELI NE_KI LL

TI MELI NE_PAUSE

TI MELI NE_RELQAD

TI MELI NE_RESTART

TI MELI NE_SET

TYPE_CAST

VARI ABLE_TO STRI NG
VARI ABLE_TO_XM.
XM._TO_VARI ABLE

Converting Axcess Code to NetLinx Code

DEFINE_DEVICE

The DEFINE_DEVICE section of your Axcess will likely require modification. AXIink
devices can be declared just like in Axcess programs. If adeviceis declared in aNetLinx
program with just the device number, the NetLinx Compiler assumes that it has a Port
number of 1 and a System number of 0. However, you should convert all existing device
declaration using the D:P:S (Device:Port:System) notation. Doing so enabled certain
NetLinx specific debugging features and can help pinpoint other, possible obscure, errors.

AXxcess Code

DEFI NE_DEVI CE

VPRQJ = 1 (* RS232 controlled Projector *)
VCR =18 (* IR controlled VCR *)

o) = 14 (* Power sensing via VSS2 for VCR *)
RADI O = 96 (* AXR-RF for TXGC 32+ *)

TP = 128 (* Touch Panel *)

NetLinx Code

DEFI NE_DEVI CE

VPRQJ = 1:1:0 (* RS232 controlled Projector *)
VCR =8:1:0 (* IR controlled VCR *)

o) = 14:1: 0 (* Power sensing via VSS2 for VCR *)
RADI O = 96:1: 0 (* AXR-RF for TXC 32+ *)

TP = 128:1:0 (* Touch Panel *)

In NetLinx, a system number of 0 means “local system”. When referencing a device on
the local system, you should use avalue of O instead of the actual system number. This
allows the code to be more portable; it can run on multiple NetLinx systems the same
way without modification. 1f you want to reference a device on another master, you
must use the System number of the other master.

DEFINE_COMBINE statements require the use of a Virtual Device. Virtual Devices are
declared in the DEFINE_DEVICE section and have a value between 32768 and 36863.
The Virtual Device must be the first device in the DEFINE_COMBINE list. The master
treats the Virtual Device just like any other device, except the Virtual Device can never
go offline. This resolves some problems associated with the first device in the
DEFINE_COMBINE list falling offline.

AXxcess Code

DEFI NE_DEVI CE

TP1
TP2

128 (* Touch Panel 1 *)
132 (* Touch Panel 2 *)

Converting Axcess Code to NetLinx Code 7

DEFI NE_COMBI NE (TP1, TP2)

NetLinx Code

DEFI NE_DEVI CE

TP1 = 128 (* Touch Panel 1 *)
TP2 = 132 (* Touch Panel 2 *)
TP_VIRTUAL = 33001:1:0 (* Virtual Touch Panel for conbine *)

DEFI NE_COMBI NE (TP_VI RTUAL , TP1, TP2)

DEFINE_CONSTANT

Axcess defines Constants as either a fixed integer value between 0 and 65,535 or an array
with a maximum length of 255 bytes where each element can hold a value from O to 255.
These values can be expressed in ASCII, Decimal or Hexadecimal. An expression can
include any previously defined symbol and can be built using the double-quote syntax.

NetLinx processes Constants slightly differently than Axcess programs. NetLinx allows
you to define an expression in the DEFINE_CONSTANT section. However, double-
guote expressions are not allowed, all values must be constants and the constant must
declared as an array by including a set of empty brackets following the constant name.
NetLinx also includes.

Since NetLinx isastrongly typed language, constants are casts to types as well.
Occasionally, this may cause problems when constants are assigned to the results of a
mathmatic operation. For instance, if a constant is defined as 10 * 40, the value may get
catsto a CHAR resulting in avalue of 144(400 MOD 256) instead of 400. In these cases,
NetLinx include a new variable type to create constant variables.

Axcess Code

DEFI NE_CONSTANT

VALUE_M N = 40
DEFAULT_NAME = *‘ Axcess’

ETX = “$FE, $FF"
VALUE_MAX = 140

P_PON = "$02, ' PON , $03"
LARGE _CONST =10 * 40
NetLinx Code

DEFI NE_CONSTANT

VALUE_M N = 40

DEFAULT_NAME = ‘ Axcess’

Converting Axcess Code to NetLinx Code 8

ETX[] = { $FE, $FF}
VALUE_MAX = VALUE_M N + 100
P_PON] = {$02,"P","O0,"'N, $03}

DEFI NE_VARI ABLE
CONSTANT | NTEGER LARGE_CONST = 10 * 40

DEFINE_VARIABLE

In Axcess, there were three kinds of variable: INTEGERS, ARRAY sand INTEGER
ARRAY’s. Converting between one type of variable to another was usually asimple
matter and handled for you automatically. For instance, you could assign an INTEGER
ARRAY to an ARRAY without an error or warning that data will be lost.

The NetLinx language is a strongly typed language. Thismeansthat each type of
variable is predefined as part of the programming language and all constants or variables
defined must be described with one of the data types. Certain operations may be
allowable only with certain data types. For example, if you try to convert an INTEGER
ARRAY toan ARRAY, you will receive warnings from the compiler. Thisisnot an
error, but isjust areminder that values above 255 will be truncated. Axcess also
truncated the values, it just didn't give you a warning.

NetLinx will assume certain data types for you automatically the way Axcessdid. If you
create a variable without a type and that variable is not an array, NetLinx will assume you
mean the variable is of type INTEGER. If you create a variable without a type and that
variable is an array, NetLinx will assume you mean the variable is of type CHAR.

Since NetLinx isastrongly typed language, there are likely to be some variable that
required typesin order to compile under NetLinx. Most commonly, these occur when
you assign adeviceto avariable. All devicesin NetLinx are DEV structures, composed
of the Number, Port and System used in the D:P:S notation. In order to assign adeviceto
avariable in NetLinx, you can either change the variable to be of type DEV or modify the
code to store only part of the DEV structure to the variable.

AXxcess Code

DEFI NE_VARI ABLE

CURRENT _SOURCE (* Currently selected source *)
DEFI NE_START

CURRENT _SOURCE = VCR (* Set VCR as currently selected *)
NetLinx Code

DEFI NE_VARI ABLE

Converting Axcess Code to NetLinx Code 9

DEV CURRENT _SOURCE (* Currently selected source
*)

DEFI NE_START

CURRENT _SOQURCE = VCR (* Set VCR as currently selected *)

or

DEFI NE_VARI ABLE

CURRENT _SOURCE (* Currently selected source *)
DEFI NE_START

CURRENT_SOURCE = VCR. NUMBER (* Set VCR as currently selected *)
DEFINE_CALL

In NetLinx, the DEFINE_CALL section behaves asit doesin Axcess. However, you
may need to add variable typesto call parameters to eliminate warnings. Aswith
variables used to hold device references, you should declare parameters to be of type
DEV.

Axcess Code

DEFI NE_CALL ‘ SEND TO DEVI CE' (CARD, STR[100])

SEND_STRI NG CARD, " STR’
}

NetLinx Code

DEFI NE_CALL ‘ SEND TO DEVI CE (DEV CARD, STR[100])

SEND_STRI NG CARD, " STR’
}

DEFINE_START

In NetLinx, the DEFINE_START section behaves as it doesin Axcess. However, anew
mechanism in NetLinx, the DEFINE_EVENT section, is more commonly used for device
initialization. It is possible that commandsissued to devicein DEFINE_START of an
Axcess program will not work properly in aNetLinx program. Thisis occurs because at
thetime DEFINE_START runs, the device has not reported to the NetLinx master and is
not online.

Converting Axcess Code to NetLinx Code 10

If you believe that commands from DEFINE_START do not appear to work in your
NetLinx program, you should move them to aDATA_EVENT inthe DEFINE_EVENT
section.

Axcess Code

DEFI NE_START

SEND COMMVAND VOL, ' P1=P2’
NetLinx Code

DEFI NE_EVENT
DATA_EVENT[VOL]

ONLI NE:
SEND_COMVAND VOL, ' P1=P2’

Syntax Rules

NetLinx has a more robust and strict compiler. Errors that were overlooked in Axcess
will be caught in NetLinx. This means that older Axcess code that compiled error free
may not compile in NetLinx. This does not mean that the language changed, only that
certain errors did not surface under the Axcess Compiler. Axcess alowed the following
expressions but they will need to be corrected in order to compile in NetLinx:

Axcess Code

IF (X =1) AND (Y = 1) (* No () around the expression *)
SEND STRING 0, "' Debug Statenent’ 13, 10" (* M ssing conma *)

NetLinx Code

IF ((X =1) AND (Y = 1)) (* () around the expression required *)
SEND_STRI NG 0, "’ Debug Statenent’, 13, 10” (* Comma required *)

Axcess alow implied string expressions when sending strings and command via
SEND_STRING and SEND_COMMAND. Axcess allows asingle byte to be interpreted
as a string without wrapping it in double-quotes. NetLinx requires that this expression is
wrapped in double-gquotes:

Axcess Code

SEND STRI NG CAM $90 (* INITIALI ZE COWM *)

Converting Axcess Code to NetLinx Code 11

NetLinx Code

SEND_STRI NG CAM " $90” (* INITIALI ZE COWM *)

Keyword Changes

To exist properly in the NetLinx environment, certain keyword behaviors have changed.
Although thisis limited, you should note and understand the behaviors of these
keywords. These new behaviors may or may not affect your program.

WHILE

In NetLinx, WHILE loops no longer timeout after a half second. Relying on the WHILE
timeout was never recommended, but now it can lock you into an endless loop. WHILE
loops now behave just like MEDIUM_WHILE loops.

Order of Operation

According to each of their language reference manuals Axcess and NetLinx each give the
operator NOT highest precedence while giving AND and OR lowest. Asdemonstrated in
the following code, however, the two systems behave differently. Inreality, Axcess
gives the operator NOT lowest precedence instead of the highest. Usually, this problem
is solved by wrapping the NOT expression in parentheses which forces the expression to
execute in the desired order. However, your program may be taking advantage of the
logic flaw. When these systems are converted to NetLinx, the logic does not work as
desired.

DEFI NE_CALL ‘ PRECEDENCE' (A, B)
LOCAL_ VAR C D E

{

C=1A& B
D=B&&!'A
E=1B&& A
}
DEFI NE_START
CALL PRECEDENCE ' (0, 0)
CALL PRECEDENCE ' (1, 0)
CALL PRECEDENCE ' (0, 1)
CALL PRECEDENCE ' (1, 1)

Converting Axcess Code to NetLinx Code 12

AXcess code

A B IA&& B B&&!A IB&& A
0 0 1 0 1

1 0 1 0 1

0 1 1 1 0

1 1 0 0 1
NetLinx Code

A B IA&& B B&&!A IB&& A
0 0 0 0 1

1 0 0 0 0

0 1 1 1 0

1 1 0 0 0

The problem applies whether A and B are channels, variables, or expressions, and for OR
aswell asAND. To solve the problem, use parentheses to force the order of operation.

Please be aware of this difference as you support programs that are being converted from
Axcessto NetLinx. When it occurs, Axcess-like operation can generally be achieved by
including all the conditionsto the right of the NOT in asingle set of parentheses.

Axcess code

| F (SYSTEM POAER && ![VCR PLAY] || [VCR RECORD])

%

NetLinx Code

| F (SYSTEM POAER && ! ([VCR PLAY] || [VCR RECORD]))

{
}

Getting your code to run

Once you have downloaded your program to the NetLinx Master, you must reboot the
Master. The Master must be rebooted for any changes to the Master to take effect,
including program downloads, system number changes, and Network | P address changes.

More Information

The NetLinx language provides many more features to programmers than Axcess. In
some cases, you will want to take advantage of these new features when converting a

Converting Axcess Code to NetLinx Code 13

system from Axcessto NetLinx. If you are starting a program from scratch, it is strongly
recommended you take advantage of these new features.

A few of the features you should take advantage of in NetLinx include the following:

» PUSHesand RELEASEs are largely replaced with the new DEFINE_EVENT
event handlers.

* Repeating operation occurring as the result of a button pressed can be moved to a
BUTTON_EVENT HOLD event handler to smplified code.

e String processing can be moved to an event handler in the DEFINE_EVENT
section for more optimal processing.

* WAIT s can bereplaced by TIMELINES proving finer resolution and event
processing for repeating processes such as polling.

If you would like more information on NetLinx programming standards and
recommendations, AMX has more documents available online. Just point your browser

Related documents and Tech Notes: NetLinx Programming Standards
TN 186
TN 249
TN 261
TN 310

Converting Axcess Code to NetLinx Code 14

http://www.amx.com

